Event-Triggered Cruise Control of Connected Automated Vehicle Platoon Subject to Input Limitations

This article proposes event-triggered cruise control in platoons of connected automated vehicles (CAVs) with heterogeneous input limitations. A distributed control protocol is developed to ensure the stability and performance of the platoon, explicitly addressing varying levels of input saturation a...

Full description

Saved in:
Bibliographic Details
Main Authors: Chaobin Zhou, Jian Gong, Qing Ling, Jinhao Liang
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/12/12/866
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article proposes event-triggered cruise control in platoons of connected automated vehicles (CAVs) with heterogeneous input limitations. A distributed control protocol is developed to ensure the stability and performance of the platoon, explicitly addressing varying levels of input saturation among vehicles. To further enhance communication efficiency, a centralized event-triggered mechanism is introduced, activating control updates only when necessary, effectively preventing Zeno behaviors through a predefined threshold. The proposed approach not only achieves global asymptotic stability but also significantly reduces communication demands, making it suitable for real-world driving conditions characterized by input constraints. Simulation results validate the effectiveness and robustness of the proposed control strategy, demonstrating its potential for practical implementation in intelligent transportation systems.
ISSN:2075-1702