An ACE2 PET imaging agent derived from 18F/Cl exchange of MLN-4760 under phase transfer catalysis
Abstract Background Angiotensin-converting enzyme-2 (ACE2) acts as a key regulatory molecule and important therapeutic target in the pathological remodeling of numerous organs and diseases. In this study, a rapid, simple, and efficient synthetic route with a catalytic, 18F-for-Cl (18F/Cl) exchange s...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2024-12-01
|
| Series: | EJNMMI Radiopharmacy and Chemistry |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s41181-024-00316-5 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Background Angiotensin-converting enzyme-2 (ACE2) acts as a key regulatory molecule and important therapeutic target in the pathological remodeling of numerous organs and diseases. In this study, a rapid, simple, and efficient synthetic route with a catalytic, 18F-for-Cl (18F/Cl) exchange scheme was designed for the preparation of 18F-labeled MLN-4760, and its targeting ability was investigated in a humanized ACE2 mouse model. Results A novel 18F-labeled MLN-4760 radioligand, abbreviated as 18F-MLN-4760, was successfully synthesized by the 18F/Cl exchange-labeling, and was purified by SepPak C18 columns with a radiochemical yield of 30% and a radiochemical purity of 29.89%. Target distribution of 18F-MLN-4760 in several organs with high ACE2 expression was observed by PET imaging with good stability over 120 min. The biodistribution data showed that the uptake of 18F-MLN-4760 in ACE2-overexpressing organs and tissues was highly specific, and immunohistochemistry confirmed the same results of ACE2 expression and biodistribution in the major organs (heart, liver, lungs, and kidneys). There was a good correlation between the uptake in the organs with high ACE2 expression and ACE2 expression levels (r = 0.935). Conclusion 18F-MLN-4760 was successfully synthesized via 18F/Cl exchange under phase transfer catalysis, and served as a potential probe for ACE2-targeted PET imaging. |
|---|---|
| ISSN: | 2365-421X |