Estimation of barley yield from Sentinel-1 and Sentinel-2 imagery and climatic variables

A precise estimation of agricultural production provides relevant information for upcoming seasons, and helps in the assessment of crop losses before harvest in case of adverse situations. The objective of this work is to explore the development of a model capable of estimating barley production of...

Full description

Saved in:
Bibliographic Details
Main Authors: Cristian Iranzo, Raquel Montorio, Alberto García-Martín
Format: Article
Language:English
Published: Universitat Politècnica de València 2022-01-01
Series:Revista de Teledetección
Subjects:
Online Access:https://polipapers.upv.es/index.php/raet/article/view/15099
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846146665037168640
author Cristian Iranzo
Raquel Montorio
Alberto García-Martín
author_facet Cristian Iranzo
Raquel Montorio
Alberto García-Martín
author_sort Cristian Iranzo
collection DOAJ
description A precise estimation of agricultural production provides relevant information for upcoming seasons, and helps in the assessment of crop losses before harvest in case of adverse situations. The objective of this work is to explore the development of a model capable of estimating barley production of a small agricultural production (127 ha) in Belchite, Spain. Variables adapted to the crop calendar of the growing barley are used to achieve that purpose. The variables have been created with weather data and remote sensing images. These images are acquired in two ranges of the electromagnetic spectrum, i.e., microwaves and optical spectral range, obtained from Sentinel-1 and Sentinel-2, respectively. Models are defined with a multiple linear regression method using all combinations of the independent  variables correlated with production. The best linear regression model has a prediction error of 57.38 kg/ha (4%). The use of spectral variables, derived from radar vegetation index Cross Ratio (CR) and optical Inverted Red Edge Chlorophyll Index (IRECI), and climatic variables adapted to the crop calendar and climatic conditioning is revealed as an adequate strategy to obtain adjusted models.
format Article
id doaj-art-42f74f0af0454677a8dc4906dff82e19
institution Kabale University
issn 1133-0953
1988-8740
language English
publishDate 2022-01-01
publisher Universitat Politècnica de València
record_format Article
series Revista de Teledetección
spelling doaj-art-42f74f0af0454677a8dc4906dff82e192024-12-02T01:49:53ZengUniversitat Politècnica de ValènciaRevista de Teledetección1133-09531988-87402022-01-01059597010.4995/raet.2022.150999238Estimation of barley yield from Sentinel-1 and Sentinel-2 imagery and climatic variablesCristian Iranzo0Raquel Montorio1Alberto García-Martín2Universidad de ZaragozaUniversidad de ZaragozaCentro Universitario de la Defensa de Zaragoza, Academia General Militar ; Universidad de ZaragozaA precise estimation of agricultural production provides relevant information for upcoming seasons, and helps in the assessment of crop losses before harvest in case of adverse situations. The objective of this work is to explore the development of a model capable of estimating barley production of a small agricultural production (127 ha) in Belchite, Spain. Variables adapted to the crop calendar of the growing barley are used to achieve that purpose. The variables have been created with weather data and remote sensing images. These images are acquired in two ranges of the electromagnetic spectrum, i.e., microwaves and optical spectral range, obtained from Sentinel-1 and Sentinel-2, respectively. Models are defined with a multiple linear regression method using all combinations of the independent  variables correlated with production. The best linear regression model has a prediction error of 57.38 kg/ha (4%). The use of spectral variables, derived from radar vegetation index Cross Ratio (CR) and optical Inverted Red Edge Chlorophyll Index (IRECI), and climatic variables adapted to the crop calendar and climatic conditioning is revealed as an adequate strategy to obtain adjusted models.https://polipapers.upv.es/index.php/raet/article/view/15099agriculturaíndices de vegetacióncalendario agronómicoregresión múltiplegoogle earth engine
spellingShingle Cristian Iranzo
Raquel Montorio
Alberto García-Martín
Estimation of barley yield from Sentinel-1 and Sentinel-2 imagery and climatic variables
Revista de Teledetección
agricultura
índices de vegetación
calendario agronómico
regresión múltiple
google earth engine
title Estimation of barley yield from Sentinel-1 and Sentinel-2 imagery and climatic variables
title_full Estimation of barley yield from Sentinel-1 and Sentinel-2 imagery and climatic variables
title_fullStr Estimation of barley yield from Sentinel-1 and Sentinel-2 imagery and climatic variables
title_full_unstemmed Estimation of barley yield from Sentinel-1 and Sentinel-2 imagery and climatic variables
title_short Estimation of barley yield from Sentinel-1 and Sentinel-2 imagery and climatic variables
title_sort estimation of barley yield from sentinel 1 and sentinel 2 imagery and climatic variables
topic agricultura
índices de vegetación
calendario agronómico
regresión múltiple
google earth engine
url https://polipapers.upv.es/index.php/raet/article/view/15099
work_keys_str_mv AT cristianiranzo estimationofbarleyyieldfromsentinel1andsentinel2imageryandclimaticvariables
AT raquelmontorio estimationofbarleyyieldfromsentinel1andsentinel2imageryandclimaticvariables
AT albertogarciamartin estimationofbarleyyieldfromsentinel1andsentinel2imageryandclimaticvariables