Reverse-Demand-Response-Based Power Stabilization in Isolated Microgrid

This paper introduces a reverse demand response scheme that uses electric vehicles in an isolated microgrid system, aiming to solve the renewable energy curtailment issue. We focus on an off-grid system where the system operator faces a stabilization problem due to surplus energy production, while e...

Full description

Saved in:
Bibliographic Details
Main Authors: Seungchan Jeon, Jangkyum Kim, Seong Gon Choi
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/15/4081
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper introduces a reverse demand response scheme that uses electric vehicles in an isolated microgrid system, aiming to solve the renewable energy curtailment issue. We focus on an off-grid system where the system operator faces a stabilization problem due to surplus energy production, while electric vehicles seek to charge energy at a lower price. In our system model, the operator determines the incentive to encourage more charging facilities and electric vehicles to participate in the reverse demand response program. Charging facilities, acting as brokers, use a portion of these incentives to further encourage electric vehicle engagement. Electric vehicles follow the decisions made by the broker and system operator to determine their charging strategy within the system. Consequently, charging energy and incentives are allocated to the electric vehicles in proportion to their decisions. The paper investigates the economic benefits of individual participants and the contribution of power stabilization by implementing a hierarchical decision-making heterogeneous multi-leaders multi-followers Stackelberg game. By demonstrating the existence of a unique Nash Equilibrium, we show the effectiveness of the proposed model in an isolated microgrid environment.
ISSN:1996-1073