Swim-Rep fusion net: A new backbone with Faster Recurrent Criss Cross Polarized Attention.
Deep learning techniques are widely used in the field of medicine and image classification. In past studies, SwimTransformer and RepVGG are very efficient and classical deep learning models. Multi-scale feature fusion and attention mechanisms are effective means to enhance the performance of deep le...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://doi.org/10.1371/journal.pone.0321270 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Deep learning techniques are widely used in the field of medicine and image classification. In past studies, SwimTransformer and RepVGG are very efficient and classical deep learning models. Multi-scale feature fusion and attention mechanisms are effective means to enhance the performance of deep learning models. In this paper, we introduce a novel Swim-Rep fusion network, along with a new multi-scale feature fusion module called multi-scale strip pooling fusion module(MPF) and a new attention module called Faster Recurrent Criss Cross Polarized Attention (FRCPA), both of which excel at extracting multi-dimensional cross-attention and fine-grained features. Our fully supervised model achieved an impressive accuracy of 99.82% on the MIT-BIH database, outperforming the ViT model classifier by 0.12%. Additionally, our semi-supervised model demonstrated strong performance, achieving 98.4% accuracy on the validation set. Experimental results on the remote sensing image classification dataset RSSCN7 demonstrate that our new base model achieves a classification accuracy of 92.5%, which is 8.57% better than the classification performance of swim-transformer-base and 12.9% better than that of RepVGG-base, and increasing the depth of the module yields superior performance. |
|---|---|
| ISSN: | 1932-6203 |