Effects of Decanol Blended Diesel Fuel on Engine Efficiency and Pollutant Emissions

This study examined the effects of blending decanol, an oxygenated fuel, with diesel on diesel engine performance and emissions. Experiments were conducted on a single-cylinder engine at 1700 rpm and 2700 rpm, using diesel/decanol blends at 10%, 30%, and 50% by volume (D90de10, D70de30, D50de50). Re...

Full description

Saved in:
Bibliographic Details
Main Authors: Kwonwoo Jang, Jeonghyeon Yang, Beomsoo Kim, Jaesung Kwon
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/17/24/6223
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study examined the effects of blending decanol, an oxygenated fuel, with diesel on diesel engine performance and emissions. Experiments were conducted on a single-cylinder engine at 1700 rpm and 2700 rpm, using diesel/decanol blends at 10%, 30%, and 50% by volume (D90de10, D70de30, D50de50). Results showed that brake thermal efficiency decreased with higher decanol ratios at low speeds. As a result, brake specific fuel consumption and brake specific energy consumption increased due to decanol’s lower calorific value. Regarding emissions, decanol blending reduced NO<sub>x</sub>, CO, HC, and smoke. NO<sub>x</sub> emissions were lowered by the cooling effect resulting from decanol’s higher latent heat of vaporization and lower calorific value, especially at low speeds. CO and HC emissions declined as decanol’s oxygen content promoted oxidation, reducing incomplete combustion. Smoke emissions were minimized in fuel-rich zones by preventing unburned carbon particle formation. This study highlights decanol’s potential as an eco-friendly diesel blending option. Future work should optimize blending ratios and injection settings to enhance diesel engine performance.
ISSN:1996-1073