The Adhesion‐Enhanced Contact Electrification and Efficiency of Triboelectric Nanogenerators

Abstract In the present work, the contact electrification of polymers that differ in adhesion strength is studied. Electrical current is measured along with adhesion in macroscale contacting‐separation experiments. Additionally, local adhesion and roughness are studied with atomic force microscopy t...

Full description

Saved in:
Bibliographic Details
Main Authors: Linards Lapčinskis, Kaspars Mālnieks, Juris Blūms, Māris Knite, Sven Oras, Tanel Käämbre, Sergei Vlassov, Mikk Antsov, Martin Timusk, Andris Šutka
Format: Article
Language:English
Published: Wiley-VCH 2020-01-01
Series:Macromolecular Materials and Engineering
Subjects:
Online Access:https://doi.org/10.1002/mame.201900638
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846170223985557504
author Linards Lapčinskis
Kaspars Mālnieks
Juris Blūms
Māris Knite
Sven Oras
Tanel Käämbre
Sergei Vlassov
Mikk Antsov
Martin Timusk
Andris Šutka
author_facet Linards Lapčinskis
Kaspars Mālnieks
Juris Blūms
Māris Knite
Sven Oras
Tanel Käämbre
Sergei Vlassov
Mikk Antsov
Martin Timusk
Andris Šutka
author_sort Linards Lapčinskis
collection DOAJ
description Abstract In the present work, the contact electrification of polymers that differ in adhesion strength is studied. Electrical current is measured along with adhesion in macroscale contacting‐separation experiments. Additionally, local adhesion and roughness are studied with atomic force microscopy to get deeper insight into relations between surface properties and electrification. Measurements reveal that higher surface charge is formed on more adhesive surfaces, thus confirming covalent bond cleavage as a mechanism for contact electrification of polymers. Investigated materials possess enhanced contact electrification making them attractive candidates for the conversion of mechanical energy to electrical in triboelectric nanogenerator devices.
format Article
id doaj-art-3f193fa7d64b4958b300aa74d2a5ea3f
institution Kabale University
issn 1438-7492
1439-2054
language English
publishDate 2020-01-01
publisher Wiley-VCH
record_format Article
series Macromolecular Materials and Engineering
spelling doaj-art-3f193fa7d64b4958b300aa74d2a5ea3f2024-11-12T05:05:47ZengWiley-VCHMacromolecular Materials and Engineering1438-74921439-20542020-01-013051n/an/a10.1002/mame.201900638The Adhesion‐Enhanced Contact Electrification and Efficiency of Triboelectric NanogeneratorsLinards Lapčinskis0Kaspars Mālnieks1Juris Blūms2Māris Knite3Sven Oras4Tanel Käämbre5Sergei Vlassov6Mikk Antsov7Martin Timusk8Andris Šutka9Institute of Technical Physics Faculty of Materials Science and Applied Chemistry Riga Technical University Paula Valdena 3/7 Riga LV‐1048 LatviaResearch Laboratory of Functional Materials Technologies Faculty of Materials Science and Applied Chemistry Riga Technical University Paula Valdena 3/7 Riga LV‐1048 LatviaInstitute of Technical Physics Faculty of Materials Science and Applied Chemistry Riga Technical University Paula Valdena 3/7 Riga LV‐1048 LatviaInstitute of Technical Physics Faculty of Materials Science and Applied Chemistry Riga Technical University Paula Valdena 3/7 Riga LV‐1048 LatviaInstitute of Physics University of Tartu Wilhelm Ostwald Str. 1 50411 Tartu EstoniaResearch Laboratory of Functional Materials Technologies Faculty of Materials Science and Applied Chemistry Riga Technical University Paula Valdena 3/7 Riga LV‐1048 LatviaITMO University Kronverskiy pr., 49 197101 Saint Petersburg RussiaInstitute of Physics University of Tartu Wilhelm Ostwald Str. 1 50411 Tartu EstoniaResearch Laboratory of Functional Materials Technologies Faculty of Materials Science and Applied Chemistry Riga Technical University Paula Valdena 3/7 Riga LV‐1048 LatviaResearch Laboratory of Functional Materials Technologies Faculty of Materials Science and Applied Chemistry Riga Technical University Paula Valdena 3/7 Riga LV‐1048 LatviaAbstract In the present work, the contact electrification of polymers that differ in adhesion strength is studied. Electrical current is measured along with adhesion in macroscale contacting‐separation experiments. Additionally, local adhesion and roughness are studied with atomic force microscopy to get deeper insight into relations between surface properties and electrification. Measurements reveal that higher surface charge is formed on more adhesive surfaces, thus confirming covalent bond cleavage as a mechanism for contact electrification of polymers. Investigated materials possess enhanced contact electrification making them attractive candidates for the conversion of mechanical energy to electrical in triboelectric nanogenerator devices.https://doi.org/10.1002/mame.201900638contact electrificationenergy conversionmaterial transfermechanical propertiessurface analyses
spellingShingle Linards Lapčinskis
Kaspars Mālnieks
Juris Blūms
Māris Knite
Sven Oras
Tanel Käämbre
Sergei Vlassov
Mikk Antsov
Martin Timusk
Andris Šutka
The Adhesion‐Enhanced Contact Electrification and Efficiency of Triboelectric Nanogenerators
Macromolecular Materials and Engineering
contact electrification
energy conversion
material transfer
mechanical properties
surface analyses
title The Adhesion‐Enhanced Contact Electrification and Efficiency of Triboelectric Nanogenerators
title_full The Adhesion‐Enhanced Contact Electrification and Efficiency of Triboelectric Nanogenerators
title_fullStr The Adhesion‐Enhanced Contact Electrification and Efficiency of Triboelectric Nanogenerators
title_full_unstemmed The Adhesion‐Enhanced Contact Electrification and Efficiency of Triboelectric Nanogenerators
title_short The Adhesion‐Enhanced Contact Electrification and Efficiency of Triboelectric Nanogenerators
title_sort adhesion enhanced contact electrification and efficiency of triboelectric nanogenerators
topic contact electrification
energy conversion
material transfer
mechanical properties
surface analyses
url https://doi.org/10.1002/mame.201900638
work_keys_str_mv AT linardslapcinskis theadhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT kasparsmalnieks theadhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT jurisblums theadhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT marisknite theadhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT svenoras theadhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT tanelkaambre theadhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT sergeivlassov theadhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT mikkantsov theadhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT martintimusk theadhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT andrissutka theadhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT linardslapcinskis adhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT kasparsmalnieks adhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT jurisblums adhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT marisknite adhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT svenoras adhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT tanelkaambre adhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT sergeivlassov adhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT mikkantsov adhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT martintimusk adhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators
AT andrissutka adhesionenhancedcontactelectrificationandefficiencyoftriboelectricnanogenerators