A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo

Abstract Organic Electronic platforms for biosensing are being demonstrated at a fast pace, especially in healthcare applications where the use of organic (semi‐)conductive materials leads to devices that efficiently interface living matter. Nevertheless, interesting properties of organic (semi‐)con...

Full description

Saved in:
Bibliographic Details
Main Authors: Federico Rondelli, Michele Di Lauro, Gioacchino Calandra Sebastianella, Anna De Salvo, Matteo Genitoni, Mauro Murgia, Pierpaolo Greco, Carolina Giulia Ferroni, Riccardo Viaro, Luciano Fadiga, Fabio Biscarini
Format: Article
Language:English
Published: Wiley-VCH 2024-12-01
Series:Advanced Electronic Materials
Subjects:
Online Access:https://doi.org/10.1002/aelm.202400467
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841553140706443264
author Federico Rondelli
Michele Di Lauro
Gioacchino Calandra Sebastianella
Anna De Salvo
Matteo Genitoni
Mauro Murgia
Pierpaolo Greco
Carolina Giulia Ferroni
Riccardo Viaro
Luciano Fadiga
Fabio Biscarini
author_facet Federico Rondelli
Michele Di Lauro
Gioacchino Calandra Sebastianella
Anna De Salvo
Matteo Genitoni
Mauro Murgia
Pierpaolo Greco
Carolina Giulia Ferroni
Riccardo Viaro
Luciano Fadiga
Fabio Biscarini
author_sort Federico Rondelli
collection DOAJ
description Abstract Organic Electronic platforms for biosensing are being demonstrated at a fast pace, especially in healthcare applications where the use of organic (semi‐)conductive materials leads to devices that efficiently interface living matter. Nevertheless, interesting properties of organic (semi‐)conductors are usually neglected in the development of (bio‐)sensors. Among these, the non‐linear response when operated under dynamic biasing conditions (i.e., with pulsed driving voltages), thus mimicking synaptic plasticity phenomena, offers promising and largely unexplored possibilities for bio‐sensing. The artificial synaptic response's figures of merit reflect the composition of the surrounding environment and, ultimately, the ion concentration and dynamics at the organic (semi‐)conductor/electrolyte interface. Therefore, new sensing strategies that rely on the effect of target analytes on the short‐term plasticity response of Organic Neuromorphic Devices are being demonstrated. This work presents the development of a label‐free Single Electrode Neuromorphic Device (SEND) specifically designed for in vivo real‐time mapping of dopamine concentration. The device response is investigated as a function of the driving frequency, resulting in the determination of the optimal operational configuration for minimally invasive neuromorphic devices. It exhibits stable multi‐parametric response in complex fluids, in brain's mechanical models and in vivo, enabling monitoring of local variations of dopamine concentration in the rat brain.
format Article
id doaj-art-3ea8279f09e24174bd8975f3ef15e6a9
institution Kabale University
issn 2199-160X
language English
publishDate 2024-12-01
publisher Wiley-VCH
record_format Article
series Advanced Electronic Materials
spelling doaj-art-3ea8279f09e24174bd8975f3ef15e6a92025-01-09T11:51:13ZengWiley-VCHAdvanced Electronic Materials2199-160X2024-12-011012n/an/a10.1002/aelm.202400467A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in VivoFederico Rondelli0Michele Di Lauro1Gioacchino Calandra Sebastianella2Anna De Salvo3Matteo Genitoni4Mauro Murgia5Pierpaolo Greco6Carolina Giulia Ferroni7Riccardo Viaro8Luciano Fadiga9Fabio Biscarini10Center for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalySezione di Fisiologia Dipartimento di Neuroscienze e Riabilitazione Università di Ferrara via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyAbstract Organic Electronic platforms for biosensing are being demonstrated at a fast pace, especially in healthcare applications where the use of organic (semi‐)conductive materials leads to devices that efficiently interface living matter. Nevertheless, interesting properties of organic (semi‐)conductors are usually neglected in the development of (bio‐)sensors. Among these, the non‐linear response when operated under dynamic biasing conditions (i.e., with pulsed driving voltages), thus mimicking synaptic plasticity phenomena, offers promising and largely unexplored possibilities for bio‐sensing. The artificial synaptic response's figures of merit reflect the composition of the surrounding environment and, ultimately, the ion concentration and dynamics at the organic (semi‐)conductor/electrolyte interface. Therefore, new sensing strategies that rely on the effect of target analytes on the short‐term plasticity response of Organic Neuromorphic Devices are being demonstrated. This work presents the development of a label‐free Single Electrode Neuromorphic Device (SEND) specifically designed for in vivo real‐time mapping of dopamine concentration. The device response is investigated as a function of the driving frequency, resulting in the determination of the optimal operational configuration for minimally invasive neuromorphic devices. It exhibits stable multi‐parametric response in complex fluids, in brain's mechanical models and in vivo, enabling monitoring of local variations of dopamine concentration in the rat brain.https://doi.org/10.1002/aelm.202400467implantable electronicsin vivo dopamine sensingorganic neuromorphic electronicsshort‐term plasticity
spellingShingle Federico Rondelli
Michele Di Lauro
Gioacchino Calandra Sebastianella
Anna De Salvo
Matteo Genitoni
Mauro Murgia
Pierpaolo Greco
Carolina Giulia Ferroni
Riccardo Viaro
Luciano Fadiga
Fabio Biscarini
A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo
Advanced Electronic Materials
implantable electronics
in vivo dopamine sensing
organic neuromorphic electronics
short‐term plasticity
title A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo
title_full A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo
title_fullStr A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo
title_full_unstemmed A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo
title_short A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo
title_sort single electrode organic neuromorphic device for dopamine sensing in vivo
topic implantable electronics
in vivo dopamine sensing
organic neuromorphic electronics
short‐term plasticity
url https://doi.org/10.1002/aelm.202400467
work_keys_str_mv AT federicorondelli asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT micheledilauro asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT gioacchinocalandrasebastianella asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT annadesalvo asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT matteogenitoni asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT mauromurgia asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT pierpaologreco asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT carolinagiuliaferroni asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT riccardoviaro asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT lucianofadiga asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT fabiobiscarini asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT federicorondelli singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT micheledilauro singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT gioacchinocalandrasebastianella singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT annadesalvo singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT matteogenitoni singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT mauromurgia singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT pierpaologreco singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT carolinagiuliaferroni singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT riccardoviaro singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT lucianofadiga singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo
AT fabiobiscarini singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo