A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo
Abstract Organic Electronic platforms for biosensing are being demonstrated at a fast pace, especially in healthcare applications where the use of organic (semi‐)conductive materials leads to devices that efficiently interface living matter. Nevertheless, interesting properties of organic (semi‐)con...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2024-12-01
|
Series: | Advanced Electronic Materials |
Subjects: | |
Online Access: | https://doi.org/10.1002/aelm.202400467 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841553140706443264 |
---|---|
author | Federico Rondelli Michele Di Lauro Gioacchino Calandra Sebastianella Anna De Salvo Matteo Genitoni Mauro Murgia Pierpaolo Greco Carolina Giulia Ferroni Riccardo Viaro Luciano Fadiga Fabio Biscarini |
author_facet | Federico Rondelli Michele Di Lauro Gioacchino Calandra Sebastianella Anna De Salvo Matteo Genitoni Mauro Murgia Pierpaolo Greco Carolina Giulia Ferroni Riccardo Viaro Luciano Fadiga Fabio Biscarini |
author_sort | Federico Rondelli |
collection | DOAJ |
description | Abstract Organic Electronic platforms for biosensing are being demonstrated at a fast pace, especially in healthcare applications where the use of organic (semi‐)conductive materials leads to devices that efficiently interface living matter. Nevertheless, interesting properties of organic (semi‐)conductors are usually neglected in the development of (bio‐)sensors. Among these, the non‐linear response when operated under dynamic biasing conditions (i.e., with pulsed driving voltages), thus mimicking synaptic plasticity phenomena, offers promising and largely unexplored possibilities for bio‐sensing. The artificial synaptic response's figures of merit reflect the composition of the surrounding environment and, ultimately, the ion concentration and dynamics at the organic (semi‐)conductor/electrolyte interface. Therefore, new sensing strategies that rely on the effect of target analytes on the short‐term plasticity response of Organic Neuromorphic Devices are being demonstrated. This work presents the development of a label‐free Single Electrode Neuromorphic Device (SEND) specifically designed for in vivo real‐time mapping of dopamine concentration. The device response is investigated as a function of the driving frequency, resulting in the determination of the optimal operational configuration for minimally invasive neuromorphic devices. It exhibits stable multi‐parametric response in complex fluids, in brain's mechanical models and in vivo, enabling monitoring of local variations of dopamine concentration in the rat brain. |
format | Article |
id | doaj-art-3ea8279f09e24174bd8975f3ef15e6a9 |
institution | Kabale University |
issn | 2199-160X |
language | English |
publishDate | 2024-12-01 |
publisher | Wiley-VCH |
record_format | Article |
series | Advanced Electronic Materials |
spelling | doaj-art-3ea8279f09e24174bd8975f3ef15e6a92025-01-09T11:51:13ZengWiley-VCHAdvanced Electronic Materials2199-160X2024-12-011012n/an/a10.1002/aelm.202400467A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in VivoFederico Rondelli0Michele Di Lauro1Gioacchino Calandra Sebastianella2Anna De Salvo3Matteo Genitoni4Mauro Murgia5Pierpaolo Greco6Carolina Giulia Ferroni7Riccardo Viaro8Luciano Fadiga9Fabio Biscarini10Center for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalySezione di Fisiologia Dipartimento di Neuroscienze e Riabilitazione Università di Ferrara via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyCenter for Translational Neurophysiology of Speech and Communication Fondazione Istituto Italiano di Tecnologia (IIT‐CTNSC) via Fossato di Mortara 17/19 Ferrara 44121 ItalyAbstract Organic Electronic platforms for biosensing are being demonstrated at a fast pace, especially in healthcare applications where the use of organic (semi‐)conductive materials leads to devices that efficiently interface living matter. Nevertheless, interesting properties of organic (semi‐)conductors are usually neglected in the development of (bio‐)sensors. Among these, the non‐linear response when operated under dynamic biasing conditions (i.e., with pulsed driving voltages), thus mimicking synaptic plasticity phenomena, offers promising and largely unexplored possibilities for bio‐sensing. The artificial synaptic response's figures of merit reflect the composition of the surrounding environment and, ultimately, the ion concentration and dynamics at the organic (semi‐)conductor/electrolyte interface. Therefore, new sensing strategies that rely on the effect of target analytes on the short‐term plasticity response of Organic Neuromorphic Devices are being demonstrated. This work presents the development of a label‐free Single Electrode Neuromorphic Device (SEND) specifically designed for in vivo real‐time mapping of dopamine concentration. The device response is investigated as a function of the driving frequency, resulting in the determination of the optimal operational configuration for minimally invasive neuromorphic devices. It exhibits stable multi‐parametric response in complex fluids, in brain's mechanical models and in vivo, enabling monitoring of local variations of dopamine concentration in the rat brain.https://doi.org/10.1002/aelm.202400467implantable electronicsin vivo dopamine sensingorganic neuromorphic electronicsshort‐term plasticity |
spellingShingle | Federico Rondelli Michele Di Lauro Gioacchino Calandra Sebastianella Anna De Salvo Matteo Genitoni Mauro Murgia Pierpaolo Greco Carolina Giulia Ferroni Riccardo Viaro Luciano Fadiga Fabio Biscarini A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo Advanced Electronic Materials implantable electronics in vivo dopamine sensing organic neuromorphic electronics short‐term plasticity |
title | A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo |
title_full | A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo |
title_fullStr | A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo |
title_full_unstemmed | A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo |
title_short | A Single Electrode Organic Neuromorphic Device for Dopamine Sensing in Vivo |
title_sort | single electrode organic neuromorphic device for dopamine sensing in vivo |
topic | implantable electronics in vivo dopamine sensing organic neuromorphic electronics short‐term plasticity |
url | https://doi.org/10.1002/aelm.202400467 |
work_keys_str_mv | AT federicorondelli asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT micheledilauro asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT gioacchinocalandrasebastianella asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT annadesalvo asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT matteogenitoni asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT mauromurgia asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT pierpaologreco asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT carolinagiuliaferroni asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT riccardoviaro asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT lucianofadiga asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT fabiobiscarini asingleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT federicorondelli singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT micheledilauro singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT gioacchinocalandrasebastianella singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT annadesalvo singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT matteogenitoni singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT mauromurgia singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT pierpaologreco singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT carolinagiuliaferroni singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT riccardoviaro singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT lucianofadiga singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo AT fabiobiscarini singleelectrodeorganicneuromorphicdevicefordopaminesensinginvivo |