The Maximal Regularity of Nonlinear Second-Order Hyperbolic Boundary Differential Equations

In this paper, we show the maximal regularity of nonlinear second-order hyperbolic boundary differential equations. We aim to show if the given second-order partial differential operator satisfies the specific ellipticity condition; additionally, if solutions of the function, which are related to th...

Full description

Saved in:
Bibliographic Details
Main Author: Xingyu Liu
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/12/884
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we show the maximal regularity of nonlinear second-order hyperbolic boundary differential equations. We aim to show if the given second-order partial differential operator satisfies the specific ellipticity condition; additionally, if solutions of the function, which are related to the first-order time derivative, possess no poles nor algebraic branch points, then the maximal regularity of nonlinear second-order hyperbolic boundary differential equations exists. This study explores the use of taking the positive definite second-order operator as the generator of an analytic semi-group. We impose specific boundary conditions to make this positive definite second-order operator self-adjoint. As a linear operator, the self-adjoint operator satisfies the linearity property. This, in turn, facilitates the application of semi-group theory and linear operator theory.
ISSN:2075-1680