Phonon dispersion of buckled two-dimensional GaN
Abstract Group-III nitride semiconductors such as GaN have various important applications based on their three-dimensional form. Previous work has demonstrated the realization of buckled two-dimensional GaN, which can be used in GaN-based nanodevices. However, the understanding of buckled two-dimens...
Saved in:
| Main Authors: | , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-11-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-024-54921-8 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Group-III nitride semiconductors such as GaN have various important applications based on their three-dimensional form. Previous work has demonstrated the realization of buckled two-dimensional GaN, which can be used in GaN-based nanodevices. However, the understanding of buckled two-dimensional GaN remains limited due to the difficulties in experimental characterization. Here, for the first time, we have experimentally determined the phonon dispersion of buckled two-dimensional GaN by using monochromatic electron energy loss spectroscopy in conjunction with scanning transmission electron microscopy. A phonon band gap of ~40 meV between the acoustic and optical phonon branches is identified for buckled two-dimensional GaN. This phonon band gap is significantly larger than that of ~20 meV for the tetrahedral-coordinated three-dimensional GaN. Our theoretical calculations confirm this larger phonon band gap. Our findings provide critical insights into the phonon behavior of buckled two-dimensional GaN, which can be used to guide high-performance thermal management in GaN-based high-power devices. |
|---|---|
| ISSN: | 2041-1723 |