Efficiency study of nickel-containing glass-fiber catalysts for CO2 methanation
The work is dedicated to the synthesis and investigation of Ni-containing catalysts based on glass-fiber carriers (GFC) with an additionally deposited secondary layer of porous SiO2 for the process of carbon dioxide methanation. Ni-based GFCs were prepared using the surface thermosynthesis (STS) and...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-12-01
|
| Series: | e-Prime: Advances in Electrical Engineering, Electronics and Energy |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2772671124003541 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The work is dedicated to the synthesis and investigation of Ni-containing catalysts based on glass-fiber carriers (GFC) with an additionally deposited secondary layer of porous SiO2 for the process of carbon dioxide methanation. Ni-based GFCs were prepared using the surface thermosynthesis (STS) and pulse surface thermosynthesis (PSTS) methods, involves heat treatment of the catalyst with the supported Ni precursor at a high heating rate; such procedure was not applied earlier for production of CO2 methanation catalysts. The GFC sample prepared by the PSTS method with a fuel additive in the precursor composition is characterized by a more uniform distribution of Ni particles on the catalyst surface and better dispersion of Ni, smaller crystallite size: NiO crystallites in this freshly prepared GFCs are smaller than 10 nm and Ni crystallites in reduced catalysts are <30 nm. As a result, this sample demonstrated the highest apparent activity in the methanation reaction among all synthesized GFCs, it has also showed a significantly higher specific activity per unit mass of nickel compared to the commercial Ni-Al2O3 analogue. The synthesized catalysts are original, they can be effectively applied for development of novel highly efficient technologies for energy conversion/storage systems and greenhouse gas emission control. |
|---|---|
| ISSN: | 2772-6711 |