Evaluating the Accuracy of Virtual Reality in Replicating Real-Life Human Postures and Forces for Injury Risk Assessment

The objective of this study was to assess the accuracy of virtual reality (VR) technology in replicating real-life environments for the adoption of appropriate human postures and forces. Despite the widespread implementation of VR in various applications, there is a lack of research evaluating the a...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoxu Ji, Xin Gao, Ethan Swierski
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/21/7049
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to assess the accuracy of virtual reality (VR) technology in replicating real-life environments for the adoption of appropriate human postures and forces. Despite the widespread implementation of VR in various applications, there is a lack of research evaluating the accuracy of human postures and sensory aspects in the VR environment compared to real-life scenarios. A total of twenty-two student participants were recruited for this study, which involved a common lifting task. Two specific poses were identified as having potentially excessive forces exerted on the lower back. By comparing the angles of seven anatomical joints in both the real environment and the VR environment at each pose, we observed that depth perception may influence posture adoption in the VR setting. Moreover, the presence of a physical load applied to both hands significantly influenced the postures adopted by participants compared to those in the VR environment. These deviations in postures directly led to significant differences in predicted spinal forces exerted on the lower back, which in turn could result in inaccurate assessments of injury risks and the design of injury prevention programs. Therefore, it is crucial to understand the accuracy of VR technology as a substitute for real-life environments.
ISSN:1424-8220