Analysis of an Abstract Delayed Fractional Integro-Differential System via the <i>α</i>-Resolvent Operator

This paper explores the mild solutions of partial impulsive fractional integro-differential systems of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo>&...

Full description

Saved in:
Bibliographic Details
Main Authors: Ishfaq Khan, Akbar Zada, Ioan-Lucian Popa, Afef Kallekh
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/2/111
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper explores the mild solutions of partial impulsive fractional integro-differential systems of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>α</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula> in a Banach space. We derive the solution of the system under the assumption that the homogeneous part of the system admits an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-resolvent operator. Krasnoselskii’s fixed point theorem is used for the existence of solution, while uniqueness is ensured using Banach’s fixed point theorem. The stability of the system is analyzed through the framework of Hyers–Ulam stability using Lipschitz conditions. Finally, examples are presented to illustrate the applicability of the theoretical results.
ISSN:2075-1680