Analysis of an Abstract Delayed Fractional Integro-Differential System via the <i>α</i>-Resolvent Operator
This paper explores the mild solutions of partial impulsive fractional integro-differential systems of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo>&...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Axioms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-1680/14/2/111 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper explores the mild solutions of partial impulsive fractional integro-differential systems of order <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>α</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula> in a Banach space. We derive the solution of the system under the assumption that the homogeneous part of the system admits an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula>-resolvent operator. Krasnoselskii’s fixed point theorem is used for the existence of solution, while uniqueness is ensured using Banach’s fixed point theorem. The stability of the system is analyzed through the framework of Hyers–Ulam stability using Lipschitz conditions. Finally, examples are presented to illustrate the applicability of the theoretical results. |
|---|---|
| ISSN: | 2075-1680 |