Primal–dual formulation for parameter estimation in elastic contact problem with friction

This work deals with a saddle point formulation of parameter identification in linear elastic contact problems with friction. Using the primal–dual formulation of the constrained minimization problem and given observations, we estimate the Lamé coefficients through the penalization and dualization o...

Full description

Saved in:
Bibliographic Details
Main Authors: A. Bensaada, E.-H. Essoufi, A. Zafrar
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Applied Mathematics in Science and Engineering
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/27690911.2024.2367025
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work deals with a saddle point formulation of parameter identification in linear elastic contact problems with friction. Using the primal–dual formulation of the constrained minimization problem and given observations, we estimate the Lamé coefficients through the penalization and dualization of the considered inverse problem. By Fenchel duality, we provide the dual energy function associated with the constraint. We prove the existence of a solution to the regularized parameter identification problem as well as the convergence of the penalized problem to the original one. An augmented Lagrangian formulation of the inverse problem and the existence of its saddle point are provided. By means of the alternating direction method of multipliers (ADMM) and a primal–dual active set strategy (PDAS), we solve the problem numerically and illustrate our approach.
ISSN:2769-0911