Study and analysis of ion cyclotron resonance heating scenarios for ADITYA-U Tokamak
This study provides a detailed analysis of ion cyclotron resonance heating (ICRH) scenarios for ADITYA-U Tokamak which is a crucial technique for core plasma heating in magnetically confined devices. The ICRH code LION is used to study the cyclotron resonance heating of hydrogen minority ions in deu...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2025-01-01
|
| Series: | Nuclear Fusion |
| Subjects: | |
| Online Access: | https://doi.org/10.1088/1741-4326/add54a |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study provides a detailed analysis of ion cyclotron resonance heating (ICRH) scenarios for ADITYA-U Tokamak which is a crucial technique for core plasma heating in magnetically confined devices. The ICRH code LION is used to study the cyclotron resonance heating of hydrogen minority ions in deuterium plasma. The resonant heating of the minority hydrogen ions is analyzed for both fundamental and second harmonic frequencies which coincide with the second and fourth harmonics of Deuterium ions, respectively. The LION code, a full-wave solver based on the finite hybrid element method, enables detailed modeling of fast magnetosonic waves in the complex, axisymmetric geometry of the ADITYA-U Tokamak. A parametric study of power deposition both total and on individual species has been performed using several key parameters including wave frequency, toroidal wave number ( $k_{\parallel}$ ), electron temperature, and minority ion concentration. Additionally, we examine the impact of both circular and shaped plasma equilibrium conditions on the distribution of the absorbed wave power. Detailed simulations suggest that minority ion heating is quite effective in ADITYA-U plasma with a core density of $2 \times 10^{19} \, \text{m}^{-3}$ and an electron temperature of 0.35 keV at lower toroidal wave number (1–8) and minority concentration of up to 15%. The second harmonic minority heating scheme is quite promising with significant power deposition (98%) on hydrogen ions in ADITYA-U tokamak. |
|---|---|
| ISSN: | 0029-5515 |