An Improved Spectral Clustering Community Detection Algorithm Based on Probability Matrix

The similarity graphs of most spectral clustering algorithms carry lots of wrong community information. In this paper, we propose a probability matrix and a novel improved spectral clustering algorithm based on the probability matrix for community detection. First, the Markov chain is used to calcul...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuxia Ren, Shubo Zhang, Tao Wu
Format: Article
Language:English
Published: Wiley 2020-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2020/4540302
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The similarity graphs of most spectral clustering algorithms carry lots of wrong community information. In this paper, we propose a probability matrix and a novel improved spectral clustering algorithm based on the probability matrix for community detection. First, the Markov chain is used to calculate the transition probability between nodes, and the probability matrix is constructed by the transition probability. Then, the similarity graph is constructed with the mean probability matrix. Finally, community detection is achieved by optimizing the NCut objective function. The proposed algorithm is compared with SC, WT, FG, FluidC, and SCRW on artificial networks and real networks. Experimental results show that the proposed algorithm can detect communities more accurately and has better clustering performance.
ISSN:1026-0226
1607-887X