Route Optimization for Active Sonar in Underwater Surveillance
Multistatic sonar networks (MSNs) have emerged as a powerful approach for enhancing underwater surveillance capabilities. Different from monostatic sonar systems which use collocated sources and receivers, MSNs consist of spatially distributed and independent sources and receivers. In this work, we...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/13/4139 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Multistatic sonar networks (MSNs) have emerged as a powerful approach for enhancing underwater surveillance capabilities. Different from monostatic sonar systems which use collocated sources and receivers, MSNs consist of spatially distributed and independent sources and receivers. In this work, we address the problem of determining the optimal route for a mobile multistatic active sonar source to maximize area coverage, assuming all receiver locations are known in advance. For this purpose, we first develop a Mixed Integer Linear Program (MILP) formulation that determines the route for a single source within a field discretized using a hexagonal grid structure. Next, we propose an Ant Colony Optimization (ACO) heuristic to efficiently solve large problem instances. We perform a series of numerical experiments and compare the performance of the exact MILP solution with that of the proposed ACO heuristic. |
|---|---|
| ISSN: | 1424-8220 |