Structural Behavior of Thin-Walled Concrete-Filled Steel Tube Used in Cable Tunnel: An Experimental and Numerical Investigation

One steel grid and five thin-walled concrete-filled steel tubes (CTST) used as the supports of tunnel were tested in site for investigating the mechanical behavior. The mechanical influences of thickness, node form, and concrete on CTST were gained and compared with the impacts on steel grid. It is...

Full description

Saved in:
Bibliographic Details
Main Authors: Hetao Hou, Su Ma, Bing Qu, Yanhong Liang, Yanjun Jin, Wencan Zhu, Lei Chen
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2015/781823
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One steel grid and five thin-walled concrete-filled steel tubes (CTST) used as the supports of tunnel were tested in site for investigating the mechanical behavior. The mechanical influences of thickness, node form, and concrete on CTST were gained and compared with the impacts on steel grid. It is indicated that high antideformation capacity of CTST improved the stability of surrounding rock in short time. The cementitious grouted sleeve connection exhibited superior flexibility when CTST was erected and built. Although the deformation of rock and soil in the tunnel was increasing, good compression resistance was observed by CTST with the new connection type. It was also seen that vault, tube foot, and connections were with larger absolute strain values. The finite element analysis (FEA) was carried out using ABAQUS program. The results were validated by comparison with experimental results. The FE model could be referred by similar projects.
ISSN:1687-8434
1687-8442