A thin film lithium niobate near-infrared platform for multiplexing quantum nodes

Abstract Practical quantum networks will require multi-qubit quantum nodes. This in turn will increase the complexity of the photonic circuits needed to control each qubit and require strategies to multiplex memories. Integrated photonics operating at visible to near-infrared (VNIR) wavelength range...

Full description

Saved in:
Bibliographic Details
Main Authors: Daniel Assumpcao, Dylan Renaud, Aida Baradari, Beibei Zeng, Chawina De-Eknamkul, C. J. Xin, Amirhassan Shams-Ansari, David Barton, Bartholomeus Machielse, Marko Loncar
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-54541-2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Practical quantum networks will require multi-qubit quantum nodes. This in turn will increase the complexity of the photonic circuits needed to control each qubit and require strategies to multiplex memories. Integrated photonics operating at visible to near-infrared (VNIR) wavelength range can provide solutions to these needs. In this work, we realize a VNIR thin-film lithium niobate (TFLN) integrated photonics platform with the key components to meet these requirements, including low-loss couplers (<1 dB/facet), switches (>20 dB extinction), and high-bandwidth electro-optic modulators (>50 GHz). With these devices, we demonstrate high-efficiency and CW-compatible frequency shifting (>50% efficiency at 15 GHz), as well as simultaneous laser amplitude and frequency control. Finally, we highlight an architecture for multiplexing quantum memories and outline how this platform can enable a 2-order of magnitude improvement in entanglement rates over single memory nodes. Our results demonstrate that TFLN can meet the necessary performance and scalability benchmarks to enable large-scale quantum nodes.
ISSN:2041-1723