Metamaterial unipolar quantum optoelectronics for mid-infrared free-space optics
Free-space optical communications in the mid-infrared transparency windows (4–5 and 8–14 μm wavelength regions) is emerging as a viable solution for high bitrate data transmission. Unipolar quantum optoelectronics is the technology of choice for data communication in this wavelength region, thanks t...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
AIP Publishing LLC
2024-11-01
|
| Series: | APL Photonics |
| Online Access: | http://dx.doi.org/10.1063/5.0225920 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1846141129381117952 |
|---|---|
| author | T. Bonazzi H. Dely P. Didier D. Gacemi B. Fix M. Beck J. Faist A. Harouri I. Sagnes F. Grillot A. Vasanelli C. Sirtori |
| author_facet | T. Bonazzi H. Dely P. Didier D. Gacemi B. Fix M. Beck J. Faist A. Harouri I. Sagnes F. Grillot A. Vasanelli C. Sirtori |
| author_sort | T. Bonazzi |
| collection | DOAJ |
| description | Free-space optical communications in the mid-infrared transparency windows (4–5 and 8–14 μm wavelength regions) is emerging as a viable solution for high bitrate data transmission. Unipolar quantum optoelectronics is the technology of choice for data communication in this wavelength region, thanks to the high frequency response of detectors and modulators. In this work, it is demonstrated that the performances of these devices can be substantially enhanced by embedding them into metamaterials. It is also shown that metamaterials have to be engineered differently in detectors than in modulators, as the role of light–matter interaction must be tuned adequately in the two devices. Metamaterial-enhanced performances allow the realization of data transmission with a record rate of 68 Gbit/s, while ensuring robustness and consistency, as it should be for real-world applications. These findings underscore the promising role of metamaterial-enhanced unipolar devices in advancing free-space optical communication systems. |
| format | Article |
| id | doaj-art-39fb4fa4a08a4cb7a1e8010dfb2c66be |
| institution | Kabale University |
| issn | 2378-0967 |
| language | English |
| publishDate | 2024-11-01 |
| publisher | AIP Publishing LLC |
| record_format | Article |
| series | APL Photonics |
| spelling | doaj-art-39fb4fa4a08a4cb7a1e8010dfb2c66be2024-12-04T17:05:05ZengAIP Publishing LLCAPL Photonics2378-09672024-11-01911110801110801-1210.1063/5.0225920Metamaterial unipolar quantum optoelectronics for mid-infrared free-space opticsT. Bonazzi0H. Dely1P. Didier2D. Gacemi3B. Fix4M. Beck5J. Faist6A. Harouri7I. Sagnes8F. Grillot9A. Vasanelli10C. Sirtori11Laboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, FranceLaboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, FranceTélécom Paris, Institut Polytechnique de Paris, LTCI, Palaiseau, FranceLaboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, FranceDOTA, ONERA, Université Paris-Saclay, F-91123 Palaiseau, FranceInstitute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, SwitzerlandInstitute for Quantum Electronics, ETH Zürich, CH-8093 Zürich, SwitzerlandUniversité Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau 91120, FranceUniversité Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau 91120, FranceTélécom Paris, Institut Polytechnique de Paris, LTCI, Palaiseau, FranceLaboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, FranceLaboratoire de Physique de l’ENS, Département de Physique, École Normale Supérieure, Université PSL, Sorbonne Université, Université Paris Cité, CNRS, 75005 Paris, FranceFree-space optical communications in the mid-infrared transparency windows (4–5 and 8–14 μm wavelength regions) is emerging as a viable solution for high bitrate data transmission. Unipolar quantum optoelectronics is the technology of choice for data communication in this wavelength region, thanks to the high frequency response of detectors and modulators. In this work, it is demonstrated that the performances of these devices can be substantially enhanced by embedding them into metamaterials. It is also shown that metamaterials have to be engineered differently in detectors than in modulators, as the role of light–matter interaction must be tuned adequately in the two devices. Metamaterial-enhanced performances allow the realization of data transmission with a record rate of 68 Gbit/s, while ensuring robustness and consistency, as it should be for real-world applications. These findings underscore the promising role of metamaterial-enhanced unipolar devices in advancing free-space optical communication systems.http://dx.doi.org/10.1063/5.0225920 |
| spellingShingle | T. Bonazzi H. Dely P. Didier D. Gacemi B. Fix M. Beck J. Faist A. Harouri I. Sagnes F. Grillot A. Vasanelli C. Sirtori Metamaterial unipolar quantum optoelectronics for mid-infrared free-space optics APL Photonics |
| title | Metamaterial unipolar quantum optoelectronics for mid-infrared free-space optics |
| title_full | Metamaterial unipolar quantum optoelectronics for mid-infrared free-space optics |
| title_fullStr | Metamaterial unipolar quantum optoelectronics for mid-infrared free-space optics |
| title_full_unstemmed | Metamaterial unipolar quantum optoelectronics for mid-infrared free-space optics |
| title_short | Metamaterial unipolar quantum optoelectronics for mid-infrared free-space optics |
| title_sort | metamaterial unipolar quantum optoelectronics for mid infrared free space optics |
| url | http://dx.doi.org/10.1063/5.0225920 |
| work_keys_str_mv | AT tbonazzi metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics AT hdely metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics AT pdidier metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics AT dgacemi metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics AT bfix metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics AT mbeck metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics AT jfaist metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics AT aharouri metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics AT isagnes metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics AT fgrillot metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics AT avasanelli metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics AT csirtori metamaterialunipolarquantumoptoelectronicsformidinfraredfreespaceoptics |