‎A New Approach to Define the Number of Clusters for Partitional Clustering Algorithms

‎Data clustering consists of grouping similar objects according to some characteristic‎. ‎In the literature‎, ‎there are several clustering algorithms‎, ‎among which stands out the Fuzzy C-Means (FCM)‎, ‎one of the most discussed algorithms‎, ‎being used in different applications‎. ‎Although it is a...

Full description

Saved in:
Bibliographic Details
Main Authors: Huliane Silva, Benjamın Ren Callejas Bedregal, Anne Canuto, Thiago Batista, Ronildo Moura
Format: Article
Language:English
Published: Islamic Azad University, Bandar Abbas Branch 2024-05-01
Series:Transactions on Fuzzy Sets and Systems
Subjects:
Online Access:https://sanad.iau.ir/journal/tfss/Article/977417
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846172729795936256
author Huliane Silva
Benjamın Ren Callejas Bedregal
Anne Canuto
Thiago Batista
Ronildo Moura
author_facet Huliane Silva
Benjamın Ren Callejas Bedregal
Anne Canuto
Thiago Batista
Ronildo Moura
author_sort Huliane Silva
collection DOAJ
description ‎Data clustering consists of grouping similar objects according to some characteristic‎. ‎In the literature‎, ‎there are several clustering algorithms‎, ‎among which stands out the Fuzzy C-Means (FCM)‎, ‎one of the most discussed algorithms‎, ‎being used in different applications‎. ‎Although it is a simple and easy to manipulate clustering method‎, ‎the FCM requires as its initial parameter the number of clusters‎. ‎Usually‎, ‎this information is unknown‎, ‎beforehand and this becomes a relevant problem in the data cluster analysis process‎. ‎In this context‎, ‎this work proposes a new methodology to determine the number of clusters of partitional algorithms‎, ‎using subsets of the original data in order to define the number of clusters‎. ‎This new methodology‎, ‎is intended to reduce the side effects of the cluster definition phase‎, ‎possibly making the processing time faster and decreasing the computational cost‎. ‎To evaluate the proposed methodology‎, ‎different cluster validation indices will be used to evaluate the quality of the clusters obtained by the FCM algorithms and some of its variants‎, ‎when applied to different databases‎. ‎Through the empirical analysis‎, ‎we can conclude that the results obtained in this article are promising‎, ‎both from an experimental point of view and from a statistical point of view‎.
format Article
id doaj-art-39cb639f186442ebaf6ce4ee271521fa
institution Kabale University
issn 2821-0131
language English
publishDate 2024-05-01
publisher Islamic Azad University, Bandar Abbas Branch
record_format Article
series Transactions on Fuzzy Sets and Systems
spelling doaj-art-39cb639f186442ebaf6ce4ee271521fa2024-11-09T06:36:33ZengIslamic Azad University, Bandar Abbas BranchTransactions on Fuzzy Sets and Systems2821-01312024-05-01316787‎A New Approach to Define the Number of Clusters for Partitional Clustering AlgorithmsHuliane Silva0Benjamın Ren Callejas Bedregal1Anne Canuto2Thiago Batista3Ronildo Moura4Departamento de Engenharias e Tecnologias, Universidade Federal Rural do Semi-rido, Pau dos Ferros, Brasil.Departamento de Inform´atica e Matem´atica Aplicada, Universidade Federal do Rio Grande do Norte, Natal, Brasil.Departamento de Inform´atica e Matem´atica Aplicada, Universidade Federal do Rio Grande do Norte, Natal, Brasil.Departamento de Inform´atica e Matem´atica Aplicada, Universidade Federal do Rio Grande do Norte, Natal, Brasil.Departamento de Inform´atica e Matem´atica Aplicada, Universidade Federal do Rio Grande do Norte, Natal, Brasil.‎Data clustering consists of grouping similar objects according to some characteristic‎. ‎In the literature‎, ‎there are several clustering algorithms‎, ‎among which stands out the Fuzzy C-Means (FCM)‎, ‎one of the most discussed algorithms‎, ‎being used in different applications‎. ‎Although it is a simple and easy to manipulate clustering method‎, ‎the FCM requires as its initial parameter the number of clusters‎. ‎Usually‎, ‎this information is unknown‎, ‎beforehand and this becomes a relevant problem in the data cluster analysis process‎. ‎In this context‎, ‎this work proposes a new methodology to determine the number of clusters of partitional algorithms‎, ‎using subsets of the original data in order to define the number of clusters‎. ‎This new methodology‎, ‎is intended to reduce the side effects of the cluster definition phase‎, ‎possibly making the processing time faster and decreasing the computational cost‎. ‎To evaluate the proposed methodology‎, ‎different cluster validation indices will be used to evaluate the quality of the clusters obtained by the FCM algorithms and some of its variants‎, ‎when applied to different databases‎. ‎Through the empirical analysis‎, ‎we can conclude that the results obtained in this article are promising‎, ‎both from an experimental point of view and from a statistical point of view‎.https://sanad.iau.ir/journal/tfss/Article/977417partitional clustering algorithms‎ ‎clustering fuzzy‎ ‎number of cluster‎
spellingShingle Huliane Silva
Benjamın Ren Callejas Bedregal
Anne Canuto
Thiago Batista
Ronildo Moura
‎A New Approach to Define the Number of Clusters for Partitional Clustering Algorithms
Transactions on Fuzzy Sets and Systems
partitional clustering algorithms‎
‎clustering fuzzy‎
‎number of cluster‎
title ‎A New Approach to Define the Number of Clusters for Partitional Clustering Algorithms
title_full ‎A New Approach to Define the Number of Clusters for Partitional Clustering Algorithms
title_fullStr ‎A New Approach to Define the Number of Clusters for Partitional Clustering Algorithms
title_full_unstemmed ‎A New Approach to Define the Number of Clusters for Partitional Clustering Algorithms
title_short ‎A New Approach to Define the Number of Clusters for Partitional Clustering Algorithms
title_sort ‎a new approach to define the number of clusters for partitional clustering algorithms
topic partitional clustering algorithms‎
‎clustering fuzzy‎
‎number of cluster‎
url https://sanad.iau.ir/journal/tfss/Article/977417
work_keys_str_mv AT hulianesilva anewapproachtodefinethenumberofclustersforpartitionalclusteringalgorithms
AT benjamınrencallejasbedregal anewapproachtodefinethenumberofclustersforpartitionalclusteringalgorithms
AT annecanuto anewapproachtodefinethenumberofclustersforpartitionalclusteringalgorithms
AT thiagobatista anewapproachtodefinethenumberofclustersforpartitionalclusteringalgorithms
AT ronildomoura anewapproachtodefinethenumberofclustersforpartitionalclusteringalgorithms