Collaborative filtering recommendation algorithm based on rough set rule extraction

To address the problem that in a practical recommendation system (RS),because of the datasets are often very sparse,the traditional collaborative filtering (CF) approach cannot provide recommendations with higher quality,a novel CF based on rough set rule extraction was proposed.Firstly,the attribut...

Full description

Saved in:
Bibliographic Details
Main Authors: Yonggong REN, Yunpeng ZHANG, Zhipeng ZHANG
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2020-01-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2020028/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the problem that in a practical recommendation system (RS),because of the datasets are often very sparse,the traditional collaborative filtering (CF) approach cannot provide recommendations with higher quality,a novel CF based on rough set rule extraction was proposed.Firstly,the attributes of user/item and the user-item rating matrix were used to construct a decision table.Then,the core value of each rule in the table was extracted through using the decision table reduction algorithm.Finally,according to the nuclear value decision rule of the core value table,the reductions of all decision rules were utilized to predict the rating scores of un-rated items.Experimental results suggest that the proposed approach can alleviate the data sparsity problem of CF,and provide recommendations with higher accuracy.
ISSN:1000-436X