Moving Griffith crack in an orthotropic strip with punches at boundary faces

Integral transform technique is employed to solve the elastodynamic problem of steady-state propagation of a Griffith crack centrally situated along the midplane of orthotropic strip of finite thickness 2h and subjected to point loading with centrally situated moving punches under constant pressure...

Full description

Saved in:
Bibliographic Details
Main Authors: S. Mukherjee, S. Das
Format: Article
Language:English
Published: Wiley 2005-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS.2005.3157
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Integral transform technique is employed to solve the elastodynamic problem of steady-state propagation of a Griffith crack centrally situated along the midplane of orthotropic strip of finite thickness 2h and subjected to point loading with centrally situated moving punches under constant pressure along the boundaries of the layer. The problem is reduced to the solution of a pair of simultaneous singular integral equations with Cauchy-type singularities which have finally been solved through the finite Hilbert transform technique. For large h, analytical expression for the stress intensity factor at the crack tip is obtained. Graphical plots of the numerical results are also presented.
ISSN:0161-1712
1687-0425