The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia

Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut micr...

Full description

Saved in:
Bibliographic Details
Main Authors: Morgane M. Thibaut, Martin Roumain, Edwige Piron, Justine Gillard, Axelle Loriot, Audrey M. Neyrinck, Julie Rodriguez, Isabelle Massart, Jean-Paul Thissen, Joshua R. Huot, Fabrizio Pin, Andrea Bonetto, Nathalie M. Delzenne, Giulio G. Muccioli, Laure B. Bindels
Format: Article
Language:English
Published: Taylor & Francis Group 2025-12-01
Series:Gut Microbes
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/19490976.2025.2449586
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841553954628960256
author Morgane M. Thibaut
Martin Roumain
Edwige Piron
Justine Gillard
Axelle Loriot
Audrey M. Neyrinck
Julie Rodriguez
Isabelle Massart
Jean-Paul Thissen
Joshua R. Huot
Fabrizio Pin
Andrea Bonetto
Nathalie M. Delzenne
Giulio G. Muccioli
Laure B. Bindels
author_facet Morgane M. Thibaut
Martin Roumain
Edwige Piron
Justine Gillard
Axelle Loriot
Audrey M. Neyrinck
Julie Rodriguez
Isabelle Massart
Jean-Paul Thissen
Joshua R. Huot
Fabrizio Pin
Andrea Bonetto
Nathalie M. Delzenne
Giulio G. Muccioli
Laure B. Bindels
author_sort Morgane M. Thibaut
collection DOAJ
description Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA). This reduction in hepatic TDCA occurred before the appearance of cachexia. Longitudinal analysis of the gut microbiota pinpointed an ASV, identified as Xylanibacter rodentium, as a bacterium potentially involved in the reduced production of TDCA. Coherently, stable isotope-based experiments highlighted a robust decrease in the microbial 7α-dehydroxylation (7α-DH) activity with no changes in the bile salt hydrolase (BSH) activity in cachectic mice. This approach also highlighted a reduced microbial 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 12α-hydroxysteroid dehydrogenase (12α-HSDH) activities in these mice. The contribution of the lower production of TDCA to cancer cachexia was explored in vitro and in vivo. In vitro, TDCA prevented myotube atrophy, whereas in vivo hepatic whole transcriptome analysis revealed that TDCA administration to cachectic mice improved the unfolded protein response and cholesterol homeostasis pathways. Coherently, TDCA administration reversed hepatic cholesterol accumulation in these mice. Altogether, this work highlights the contribution of the gut microbiota to bile acid dysmetabolism and the therapeutic interest of the secondary bile acid TDCA for hepatic cholesterol homeostasis in the context of cancer cachexia. Such discovery may prove instrumental in the understanding of other metabolic diseases characterized by microbial dysbiosis. More broadly, our work demonstrates the interest and relevance of microbial activity measurements using stable isotopes, an approach currently underused in the microbiome field.
format Article
id doaj-art-3988e22657af4fec819198909103748a
institution Kabale University
issn 1949-0976
1949-0984
language English
publishDate 2025-12-01
publisher Taylor & Francis Group
record_format Article
series Gut Microbes
spelling doaj-art-3988e22657af4fec819198909103748a2025-01-09T04:50:34ZengTaylor & Francis GroupGut Microbes1949-09761949-09842025-12-0117110.1080/19490976.2025.2449586The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexiaMorgane M. Thibaut0Martin Roumain1Edwige Piron2Justine Gillard3Axelle Loriot4Audrey M. Neyrinck5Julie Rodriguez6Isabelle Massart7Jean-Paul Thissen8Joshua R. Huot9Fabrizio Pin10Andrea Bonetto11Nathalie M. Delzenne12Giulio G. Muccioli13Laure B. Bindels14Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, BelgiumMetabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, BelgiumMetabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, BelgiumMetabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, BelgiumComputational Biology and Bioinformatics Unit (CBIO), de Duve Institute, UCLouvain, Université catholique de Louvain, Brussels, BelgiumMetabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, BelgiumMetabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, BelgiumEndocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, BelgiumEndocrinology, Diabetology and Nutrition Department, Institut de Recherches Expérimentales et Cliniques, UCLouvain, Université catholique de Louvain, Cliniques Universitaires Saint-Luc, Brussels, BelgiumDepartment of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USADepartment of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USADepartment of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USAMetabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, BelgiumBioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, BelgiumMetabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, BelgiumAlterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA). This reduction in hepatic TDCA occurred before the appearance of cachexia. Longitudinal analysis of the gut microbiota pinpointed an ASV, identified as Xylanibacter rodentium, as a bacterium potentially involved in the reduced production of TDCA. Coherently, stable isotope-based experiments highlighted a robust decrease in the microbial 7α-dehydroxylation (7α-DH) activity with no changes in the bile salt hydrolase (BSH) activity in cachectic mice. This approach also highlighted a reduced microbial 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 12α-hydroxysteroid dehydrogenase (12α-HSDH) activities in these mice. The contribution of the lower production of TDCA to cancer cachexia was explored in vitro and in vivo. In vitro, TDCA prevented myotube atrophy, whereas in vivo hepatic whole transcriptome analysis revealed that TDCA administration to cachectic mice improved the unfolded protein response and cholesterol homeostasis pathways. Coherently, TDCA administration reversed hepatic cholesterol accumulation in these mice. Altogether, this work highlights the contribution of the gut microbiota to bile acid dysmetabolism and the therapeutic interest of the secondary bile acid TDCA for hepatic cholesterol homeostasis in the context of cancer cachexia. Such discovery may prove instrumental in the understanding of other metabolic diseases characterized by microbial dysbiosis. More broadly, our work demonstrates the interest and relevance of microbial activity measurements using stable isotopes, an approach currently underused in the microbiome field.https://www.tandfonline.com/doi/10.1080/19490976.2025.2449586Cancer cachexiabile acidsgut microbiotamuscle atrophyliverXylanibacter
spellingShingle Morgane M. Thibaut
Martin Roumain
Edwige Piron
Justine Gillard
Axelle Loriot
Audrey M. Neyrinck
Julie Rodriguez
Isabelle Massart
Jean-Paul Thissen
Joshua R. Huot
Fabrizio Pin
Andrea Bonetto
Nathalie M. Delzenne
Giulio G. Muccioli
Laure B. Bindels
The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia
Gut Microbes
Cancer cachexia
bile acids
gut microbiota
muscle atrophy
liver
Xylanibacter
title The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia
title_full The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia
title_fullStr The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia
title_full_unstemmed The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia
title_short The microbiota-derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia
title_sort microbiota derived bile acid taurodeoxycholic acid improves hepatic cholesterol levels in mice with cancer cachexia
topic Cancer cachexia
bile acids
gut microbiota
muscle atrophy
liver
Xylanibacter
url https://www.tandfonline.com/doi/10.1080/19490976.2025.2449586
work_keys_str_mv AT morganemthibaut themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT martinroumain themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT edwigepiron themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT justinegillard themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT axelleloriot themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT audreymneyrinck themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT julierodriguez themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT isabellemassart themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT jeanpaulthissen themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT joshuarhuot themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT fabriziopin themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT andreabonetto themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT nathaliemdelzenne themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT giuliogmuccioli themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT laurebbindels themicrobiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT morganemthibaut microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT martinroumain microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT edwigepiron microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT justinegillard microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT axelleloriot microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT audreymneyrinck microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT julierodriguez microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT isabellemassart microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT jeanpaulthissen microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT joshuarhuot microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT fabriziopin microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT andreabonetto microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT nathaliemdelzenne microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT giuliogmuccioli microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia
AT laurebbindels microbiotaderivedbileacidtaurodeoxycholicacidimproveshepaticcholesterollevelsinmicewithcancercachexia