On a prolongation construction for local non-divergent vector fields on R<sup>n</sup>

The problem of a prolongation of non-divergent vector field, defined in a vicinity of zero in Rn t, to a finite non-divergent vector field on Rn is considered. Explicit formulas for the elements of the simple Lie algebra of non-divergent vector from the well-known Cartan series are obtained. This co...

Full description

Saved in:
Bibliographic Details
Main Author: A. M. Lukatsky
Format: Article
Language:Russian
Published: Moscow State Technical University of Civil Aviation 2016-11-01
Series:Научный вестник МГТУ ГА
Subjects:
Online Access:https://avia.mstuca.ru/jour/article/view/309
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849252784955719680
author A. M. Lukatsky
author_facet A. M. Lukatsky
author_sort A. M. Lukatsky
collection DOAJ
description The problem of a prolongation of non-divergent vector field, defined in a vicinity of zero in Rn t, to a finite non-divergent vector field on Rn is considered. Explicit formulas for the elements of the simple Lie algebra of non-divergent vector from the well-known Cartan series are obtained. This construction allows to move from the Euler equations for the ideal incompressible fluid to the Euler equations on finite-dimensional Lie groups.
format Article
id doaj-art-38e1ce29061e444ca8e5b0e67e7c67d9
institution Kabale University
issn 2079-0619
2542-0119
language Russian
publishDate 2016-11-01
publisher Moscow State Technical University of Civil Aviation
record_format Article
series Научный вестник МГТУ ГА
spelling doaj-art-38e1ce29061e444ca8e5b0e67e7c67d92025-08-20T03:56:33ZrusMoscow State Technical University of Civil AviationНаучный вестник МГТУ ГА2079-06192542-01192016-11-012208894309On a prolongation construction for local non-divergent vector fields on R<sup>n</sup>A. M. Lukatsky0(ИНЭИ) РАНThe problem of a prolongation of non-divergent vector field, defined in a vicinity of zero in Rn t, to a finite non-divergent vector field on Rn is considered. Explicit formulas for the elements of the simple Lie algebra of non-divergent vector from the well-known Cartan series are obtained. This construction allows to move from the Euler equations for the ideal incompressible fluid to the Euler equations on finite-dimensional Lie groups.https://avia.mstuca.ru/jour/article/view/309locally non-divergent vector fieldsmooth prolongationideal incompressible fluideuler equationsfinite vector fieldlie algebras
spellingShingle A. M. Lukatsky
On a prolongation construction for local non-divergent vector fields on R<sup>n</sup>
Научный вестник МГТУ ГА
locally non-divergent vector field
smooth prolongation
ideal incompressible fluid
euler equations
finite vector field
lie algebras
title On a prolongation construction for local non-divergent vector fields on R<sup>n</sup>
title_full On a prolongation construction for local non-divergent vector fields on R<sup>n</sup>
title_fullStr On a prolongation construction for local non-divergent vector fields on R<sup>n</sup>
title_full_unstemmed On a prolongation construction for local non-divergent vector fields on R<sup>n</sup>
title_short On a prolongation construction for local non-divergent vector fields on R<sup>n</sup>
title_sort on a prolongation construction for local non divergent vector fields on r sup n sup
topic locally non-divergent vector field
smooth prolongation
ideal incompressible fluid
euler equations
finite vector field
lie algebras
url https://avia.mstuca.ru/jour/article/view/309
work_keys_str_mv AT amlukatsky onaprolongationconstructionforlocalnondivergentvectorfieldsonrsupnsup