Learning active flow control strategies of a swept wing by intelligent wind tunnel
An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to study the jet actuator’s performance at various attack and flap deflection angles....
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2024-09-01
|
| Series: | Theoretical and Applied Mechanics Letters |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2095034924000540 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | An intelligent wind tunnel using an active learning approach automates flow control experiments to discover the aerodynamic impact of sweeping jet on a swept wing. A Gaussian process regression model is established to study the jet actuator’s performance at various attack and flap deflection angles. By selectively focusing on the most informative experiments, the proposed framework was able to predict 3721 wing conditions from just 55 experiments, significantly reducing the number of experiments required and leading to faster and cost-effective predictions. The results show that the angle of attack and flap deflection angle are coupled to affect the effectiveness of the sweeping jet. Meanwhile, increasing the jet momentum coefficient can contribute to lift enhancement; a momentum coefficient of 3% can increase the lift coefficient by at most 0.28. Additionally, the improvement effects are more pronounced when actuators are placed closer to the wing root. |
|---|---|
| ISSN: | 2095-0349 |