Predicting conversion to psychosis using machine learning: response to Cannon
BackgroundWe previously reported that machine learning could be used to predict conversion to psychosis in individuals at clinical high risk (CHR) for psychosis with up to 90% accuracy using the North American Prodrome Longitudinal Study-3 (NAPLS-3) dataset. A definitive test of our predictive model...
Saved in:
Main Authors: | Jason Smucny, Tyrone D. Cannon, Carrie E. Bearden, Jean Addington, Kristen S. Cadenhead, Barbara A. Cornblatt, Matcheri Keshavan, Daniel H. Mathalon, Diana O. Perkins, William Stone, Elaine F. Walker, Scott W. Woods, Ian Davidson, Cameron S. Carter |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2025-01-01
|
Series: | Frontiers in Psychiatry |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fpsyt.2024.1520173/full |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Development of a Prognostic Nomogram Incorporating the Naples Prognostic Score for Postoperative Oral Squamous Cell Carcinoma Patients
by: Xu XL, et al.
Published: (2025-01-01) -
Utilisation des Anti-Inflammatoires Non Stéroïdiens chez les personnes âgées en rhumatologie au CHR-Tsévié (Togo)
by: VES Koffi-Tessio, et al.
Published: (2025-01-01) -
Analytic transparency is key for reproducibility of agricultural research
by: Gudeta W. Sileshi
Published: (2023-03-01) -
De la machine de la fête baroque à la performance urbaine : éphémère éternel
by: Alessandra Cirafici
Published: (2017-12-01) -
Corpi dissonanti: note su gender variance e sessualità. Il caso dei femminielli napoletani
by: Marzia Mauriello
Published: (2019-01-01)