An off-lattice discrete model to characterise filamentous yeast colony morphology.

We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and...

Full description

Saved in:
Bibliographic Details
Main Authors: Kai Li, J Edward F Green, Hayden Tronnolone, Alexander K Y Tam, Andrew J Black, Jennifer M Gardner, Joanna F Sundstrom, Vladimir Jiranek, Benjamin J Binder
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-11-01
Series:PLoS Computational Biology
Online Access:https://doi.org/10.1371/journal.pcbi.1012605
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food. We use approximate Bayesian computation to quantify how individual cell budding mechanisms give rise to spatial patterns observed in experiments. We apply this method of parameter inference to experimental images of colonies of two strains of S. cerevisiae, in low and high nutrient environments. The colony size at the transition from sated to pseudohyphal growth, and a forking mechanism for pseudohyphal cell proliferation are the key features driving colony morphology. Simulations run with the most likely inferred parameters produce colony morphologies that closely resemble experimental results.
ISSN:1553-734X
1553-7358