Biglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profiling

Abstract Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an interme...

Full description

Saved in:
Bibliographic Details
Main Authors: Konstantin Okonechnikov, David R. Ghasemi, Daniel Schrimpf, Svenja Tonn, Martin Mynarek, Jan Koster, Till Milde, Tuyu Zheng, Philipp Sievers, Felix Sahm, David T.W. Jones, Andreas von Deimling, Stefan M. Pfister, Marcel Kool, Kristian W. Pajtler, Andrey Korshunov
Format: Article
Language:English
Published: BMC 2025-01-01
Series:Acta Neuropathologica Communications
Subjects:
Online Access:https://doi.org/10.1186/s40478-024-01921-w
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841544189563633664
author Konstantin Okonechnikov
David R. Ghasemi
Daniel Schrimpf
Svenja Tonn
Martin Mynarek
Jan Koster
Till Milde
Tuyu Zheng
Philipp Sievers
Felix Sahm
David T.W. Jones
Andreas von Deimling
Stefan M. Pfister
Marcel Kool
Kristian W. Pajtler
Andrey Korshunov
author_facet Konstantin Okonechnikov
David R. Ghasemi
Daniel Schrimpf
Svenja Tonn
Martin Mynarek
Jan Koster
Till Milde
Tuyu Zheng
Philipp Sievers
Felix Sahm
David T.W. Jones
Andreas von Deimling
Stefan M. Pfister
Marcel Kool
Kristian W. Pajtler
Andrey Korshunov
author_sort Konstantin Okonechnikov
collection DOAJ
description Abstract Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet. Here, we performed methylation-based DNA profiling and transcriptome RNA sequencing analysis of 80 ST-EPN ZFTA-RELA investigating the clinical significance of various molecular patterns. The principal types of ZFTA-RELA fusions, based on breakpoint location, demonstrated no significant correlations with clinical outcomes. Multigene analysis disclosed 1892 survival-associated genes, and a metagene set of 100 genes subdivided ST-EPN ZFTA-RELA into favorable and unfavorable transcriptome subtypes composed of different cell subpopulations as detected by deconvolution analysis. BGN (biglycan) was identified as the top-ranked survival-associated gene and high BGN expression levels were associated with poor survival (Hazard Ratio 17.85 for PFS and 45.48 for OS; log-rank; p-value < 0.01). Furthermore, BGN immunopositivity was identified as a strong prognostic indicator of poor survival in ST-EPN, and this finding was confirmed in an independent validation set of 56 samples. Our results indicate that integrating BGN expression (at mRNA and/or protein level) into risk stratification models may improve ST-EPN ZFTA-RELA outcome prediction. Therefore, gene and/or protein expression analyses for this molecular marker could be adopted for ST-EPN ZFTA-RELA prognostication and may help assign patients to optimal therapies in prospective clinical trials.
format Article
id doaj-art-360c3a769ab0461e94964cd13e61bf38
institution Kabale University
issn 2051-5960
language English
publishDate 2025-01-01
publisher BMC
record_format Article
series Acta Neuropathologica Communications
spelling doaj-art-360c3a769ab0461e94964cd13e61bf382025-01-12T12:43:58ZengBMCActa Neuropathologica Communications2051-59602025-01-0113111210.1186/s40478-024-01921-wBiglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profilingKonstantin Okonechnikov0David R. Ghasemi1Daniel Schrimpf2Svenja Tonn3Martin Mynarek4Jan Koster5Till Milde6Tuyu Zheng7Philipp Sievers8Felix Sahm9David T.W. Jones10Andreas von Deimling11Stefan M. Pfister12Marcel Kool13Kristian W. Pajtler14Andrey Korshunov15Hopp Children’s Cancer Center Heidelberg (KiTZ)Hopp Children’s Cancer Center Heidelberg (KiTZ)Hopp Children’s Cancer Center Heidelberg (KiTZ)Pediatric Hematology and Oncology, University Medical Center Hamburg-EppendorfPediatric Hematology and Oncology, University Medical Center Hamburg-EppendorfCenter for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam and Cancer Center AmsterdamHopp Children’s Cancer Center Heidelberg (KiTZ)Hopp Children’s Cancer Center Heidelberg (KiTZ)Clinical Cooperation Unit Neuropathology (B300), German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT)Hopp Children’s Cancer Center Heidelberg (KiTZ)Hopp Children’s Cancer Center Heidelberg (KiTZ)Hopp Children’s Cancer Center Heidelberg (KiTZ)Hopp Children’s Cancer Center Heidelberg (KiTZ)Hopp Children’s Cancer Center Heidelberg (KiTZ)Hopp Children’s Cancer Center Heidelberg (KiTZ)Hopp Children’s Cancer Center Heidelberg (KiTZ)Abstract Recent genomic studies have allowed the subdivision of intracranial ependymomas into molecularly distinct groups with highly specific clinical features and outcomes. The majority of supratentorial ependymomas (ST-EPN) harbor ZFTA-RELA fusions which were designated, in general, as an intermediate risk tumor variant. However, molecular prognosticators within ST-EPN ZFTA-RELA have not been determined yet. Here, we performed methylation-based DNA profiling and transcriptome RNA sequencing analysis of 80 ST-EPN ZFTA-RELA investigating the clinical significance of various molecular patterns. The principal types of ZFTA-RELA fusions, based on breakpoint location, demonstrated no significant correlations with clinical outcomes. Multigene analysis disclosed 1892 survival-associated genes, and a metagene set of 100 genes subdivided ST-EPN ZFTA-RELA into favorable and unfavorable transcriptome subtypes composed of different cell subpopulations as detected by deconvolution analysis. BGN (biglycan) was identified as the top-ranked survival-associated gene and high BGN expression levels were associated with poor survival (Hazard Ratio 17.85 for PFS and 45.48 for OS; log-rank; p-value < 0.01). Furthermore, BGN immunopositivity was identified as a strong prognostic indicator of poor survival in ST-EPN, and this finding was confirmed in an independent validation set of 56 samples. Our results indicate that integrating BGN expression (at mRNA and/or protein level) into risk stratification models may improve ST-EPN ZFTA-RELA outcome prediction. Therefore, gene and/or protein expression analyses for this molecular marker could be adopted for ST-EPN ZFTA-RELA prognostication and may help assign patients to optimal therapies in prospective clinical trials.https://doi.org/10.1186/s40478-024-01921-wEpendymomaZFTA-RELA fusionBGNExpressionPrognosis
spellingShingle Konstantin Okonechnikov
David R. Ghasemi
Daniel Schrimpf
Svenja Tonn
Martin Mynarek
Jan Koster
Till Milde
Tuyu Zheng
Philipp Sievers
Felix Sahm
David T.W. Jones
Andreas von Deimling
Stefan M. Pfister
Marcel Kool
Kristian W. Pajtler
Andrey Korshunov
Biglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profiling
Acta Neuropathologica Communications
Ependymoma
ZFTA-RELA fusion
BGN
Expression
Prognosis
title Biglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profiling
title_full Biglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profiling
title_fullStr Biglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profiling
title_full_unstemmed Biglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profiling
title_short Biglycan-driven risk stratification in ZFTA-RELA fusion supratentorial ependymomas through transcriptome profiling
title_sort biglycan driven risk stratification in zfta rela fusion supratentorial ependymomas through transcriptome profiling
topic Ependymoma
ZFTA-RELA fusion
BGN
Expression
Prognosis
url https://doi.org/10.1186/s40478-024-01921-w
work_keys_str_mv AT konstantinokonechnikov biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT davidrghasemi biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT danielschrimpf biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT svenjatonn biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT martinmynarek biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT jankoster biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT tillmilde biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT tuyuzheng biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT philippsievers biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT felixsahm biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT davidtwjones biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT andreasvondeimling biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT stefanmpfister biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT marcelkool biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT kristianwpajtler biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling
AT andreykorshunov biglycandrivenriskstratificationinzftarelafusionsupratentorialependymomasthroughtranscriptomeprofiling