ON-OFF neuromorphic ISING machines using Fowler-Nordheim annealers
Abstract We introduce NeuroSA, a neuromorphic architecture specifically designed to ensure asymptotic convergence to the ground state of an Ising problem using a Fowler-Nordheim quantum mechanical tunneling based threshold-annealing process. The core component of NeuroSA consists of a pair of asynch...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-03-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-58231-5 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract We introduce NeuroSA, a neuromorphic architecture specifically designed to ensure asymptotic convergence to the ground state of an Ising problem using a Fowler-Nordheim quantum mechanical tunneling based threshold-annealing process. The core component of NeuroSA consists of a pair of asynchronous ON-OFF neurons, which effectively map classical simulated annealing dynamics onto a network of integrate-and-fire neurons. The threshold of each ON-OFF neuron pair is adaptively adjusted by an FN annealer and the resulting spiking dynamics replicates the optimal escape mechanism and convergence of SA, particularly at low-temperatures. To validate the effectiveness of our neuromorphic Ising machine, we systematically solved benchmark combinatorial optimization problems such as MAX-CUT and Max Independent Set. Across multiple runs, NeuroSA consistently generates distribution of solutions that are concentrated around the state-of-the-art results (within 99%) or surpass the current state-of-the-art solutions for Max Independent Set benchmarks. Furthermore, NeuroSA is able to achieve these superior distributions without any graph-specific hyperparameter tuning. For practical illustration, we present results from an implementation of NeuroSA on the SpiNNaker2 platform, highlighting the feasibility of mapping our proposed architecture onto a standard neuromorphic accelerator platform. |
|---|---|
| ISSN: | 2041-1723 |