Semantic segmentation of 3D point cloud based on contextual attention CNN

Aiming at the under-segmentation of 3D point cloud semantic segmentation caused by the lack of contextual fine-grained information of the point cloud,an algorithm based on contextual attention CNN was proposed for 3D point cloud semantic segmentation.Firstly,the fine-grained features in local area o...

Full description

Saved in:
Bibliographic Details
Main Authors: Jun YANG, Jisheng DANG
Format: Article
Language:zho
Published: Editorial Department of Journal on Communications 2020-07-01
Series:Tongxin xuebao
Subjects:
Online Access:http://www.joconline.com.cn/zh/article/doi/10.11959/j.issn.1000-436x.2020128/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aiming at the under-segmentation of 3D point cloud semantic segmentation caused by the lack of contextual fine-grained information of the point cloud,an algorithm based on contextual attention CNN was proposed for 3D point cloud semantic segmentation.Firstly,the fine-grained features in local area of the point cloud were mined through the attention coding mechanism.Secondly,the contextual features between multi-scale local areas were captured by the contextual recurrent neural network coding mechanism and compensated with the fine-grained local features.Finally,the multi-head mechanism was used to enhance the generalization ability of the network.Experiments show that the mIoU of the proposed algorithm on the three standard datasets of ShapeNet Parts,S3DIS and vKITTI are 85.4%,56.7% and 38.1% respectively,which has good segmentation performance and good generalization ability.
ISSN:1000-436X