تخمین نفوذپذیری نهایی خاک‌ها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)

نفوذپذیری یکی از مهم‌ترین پارامترهای فیزیکی خاک‌ها و از داده‌های بنیادی طرح‌های آبیاری و زه‌کشی است. اگرچه برای توصیف این پدیده، تاکنون روش‌ها و روابط مختلف تئوری و یا تجربی ارایه شده، ولی هنوز هم از جنبه‌های تطابق و امکان کاربرد علوم جدیدی نظیر روش شبکه‌های عصبی مصنوعی در پیش‌بینی این پدیده، جای تح...

Full description

Saved in:
Bibliographic Details
Format: Article
Language:fas
Published: Gorgan University of Agricultural Sciences and Natural Resources 2012-07-01
Series:پژوهش‌های حفاظت آب و خاک
Online Access:https://jwsc.gau.ac.ir/article_579_3225106d274c2d35cfaa89400acad0d1.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846143557579046912
collection DOAJ
description نفوذپذیری یکی از مهم‌ترین پارامترهای فیزیکی خاک‌ها و از داده‌های بنیادی طرح‌های آبیاری و زه‌کشی است. اگرچه برای توصیف این پدیده، تاکنون روش‌ها و روابط مختلف تئوری و یا تجربی ارایه شده، ولی هنوز هم از جنبه‌های تطابق و امکان کاربرد علوم جدیدی نظیر روش شبکه‌های عصبی مصنوعی در پیش‌بینی این پدیده، جای تحقیق و بررسی وجود دارد. در تمام روش‌های موجود برای تعیین روابط نفوذ، انجام آزمایش‌های زمان‌بر و پرهزینه صحرایی الزامی است. همچنین وجود عبارت‌های غیرخطی در روابط حاکم بر پدیده نفوذپذیری، مدل‌سازی آن را امری مشکل نموده است. از طرفی امروزه توانمندی‌های روش شبکه‌های عصبی مصنوعی در مدل‌سازی مسایل غیرخطی باعث شده تا در علوم مختلف مهندسی به موازات کاربرد روش‌های متداول، از روش شبکه‌های عصبی نیز استفاده شود. درتحقیق حاضر شبکه‌های عصبی مصنوعی به‌عنوان روشی جدید به‌منظور تخمین مقادیر نفوذپذیری نهایی خاک‌ها به‌کار گرفته شده است. در این تحقیق در مدل شبکه عصبی مصنوعی تهیه شده، پارامترهای فیزیکی خاک از جمله درصد مواد آلی، وزن مخصوص حقیقی و ظاهری، تخلخل و همچنین پارامترهای شیمیایی آن نظیر اسیدیته و میزان سدیم به‌عنوان ورودی و در مقابل مقادیر نفوذپذیری نهایی خاک به‌عنوان پارامتر خروجی مدل لحاظ شده‌اند. همچنین یک مدل آماری براساس رگرسیون‌های چندمتغیره تهیه و خروجی‌های مدل شبکه عصبی و مدل آماری با مقادیر واقعی اندازه‌گیری شده و با کاربرد معیار ضرایب همبستگی مقایسه شده است. نتایج این تحقیق نشان داد که مدل‌های شبکه عصبی مصنوعی با دقت بسیار بالا و قابل‌قبولی توانایی تخمین و پیش‌بینی مقادیر نفوذپذیری نهایی خاک‌ها را براساس پارامترهای زود یافت خاک دارند. وجه تمایز این تحقیق با سایر تحقیقات مشابه در مدل‌سازی با شبکه‌های عصبی مصنوعی آن است که، در این تحقیق علاوه‌بر کاربرد شبکه‌های عصبی مصنوعی در مورد نفوذپذیری، توانمندی‌های این روش در یافتن دانش الگوریتم در داده‌های با حجم پایین نیز به اثبات رسید.
format Article
id doaj-art-3136ae5b8a824ec6bcc36cdcfee329d1
institution Kabale University
issn 2322-2069
2322-2794
language fas
publishDate 2012-07-01
publisher Gorgan University of Agricultural Sciences and Natural Resources
record_format Article
series پژوهش‌های حفاظت آب و خاک
spelling doaj-art-3136ae5b8a824ec6bcc36cdcfee329d12024-12-02T11:18:04ZfasGorgan University of Agricultural Sciences and Natural Resourcesپژوهش‌های حفاظت آب و خاک2322-20692322-27942012-07-011613757579تخمین نفوذپذیری نهایی خاک‌ها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)نفوذپذیری یکی از مهم‌ترین پارامترهای فیزیکی خاک‌ها و از داده‌های بنیادی طرح‌های آبیاری و زه‌کشی است. اگرچه برای توصیف این پدیده، تاکنون روش‌ها و روابط مختلف تئوری و یا تجربی ارایه شده، ولی هنوز هم از جنبه‌های تطابق و امکان کاربرد علوم جدیدی نظیر روش شبکه‌های عصبی مصنوعی در پیش‌بینی این پدیده، جای تحقیق و بررسی وجود دارد. در تمام روش‌های موجود برای تعیین روابط نفوذ، انجام آزمایش‌های زمان‌بر و پرهزینه صحرایی الزامی است. همچنین وجود عبارت‌های غیرخطی در روابط حاکم بر پدیده نفوذپذیری، مدل‌سازی آن را امری مشکل نموده است. از طرفی امروزه توانمندی‌های روش شبکه‌های عصبی مصنوعی در مدل‌سازی مسایل غیرخطی باعث شده تا در علوم مختلف مهندسی به موازات کاربرد روش‌های متداول، از روش شبکه‌های عصبی نیز استفاده شود. درتحقیق حاضر شبکه‌های عصبی مصنوعی به‌عنوان روشی جدید به‌منظور تخمین مقادیر نفوذپذیری نهایی خاک‌ها به‌کار گرفته شده است. در این تحقیق در مدل شبکه عصبی مصنوعی تهیه شده، پارامترهای فیزیکی خاک از جمله درصد مواد آلی، وزن مخصوص حقیقی و ظاهری، تخلخل و همچنین پارامترهای شیمیایی آن نظیر اسیدیته و میزان سدیم به‌عنوان ورودی و در مقابل مقادیر نفوذپذیری نهایی خاک به‌عنوان پارامتر خروجی مدل لحاظ شده‌اند. همچنین یک مدل آماری براساس رگرسیون‌های چندمتغیره تهیه و خروجی‌های مدل شبکه عصبی و مدل آماری با مقادیر واقعی اندازه‌گیری شده و با کاربرد معیار ضرایب همبستگی مقایسه شده است. نتایج این تحقیق نشان داد که مدل‌های شبکه عصبی مصنوعی با دقت بسیار بالا و قابل‌قبولی توانایی تخمین و پیش‌بینی مقادیر نفوذپذیری نهایی خاک‌ها را براساس پارامترهای زود یافت خاک دارند. وجه تمایز این تحقیق با سایر تحقیقات مشابه در مدل‌سازی با شبکه‌های عصبی مصنوعی آن است که، در این تحقیق علاوه‌بر کاربرد شبکه‌های عصبی مصنوعی در مورد نفوذپذیری، توانمندی‌های این روش در یافتن دانش الگوریتم در داده‌های با حجم پایین نیز به اثبات رسید.https://jwsc.gau.ac.ir/article_579_3225106d274c2d35cfaa89400acad0d1.pdf
spellingShingle تخمین نفوذپذیری نهایی خاک‌ها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)
پژوهش‌های حفاظت آب و خاک
title تخمین نفوذپذیری نهایی خاک‌ها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)
title_full تخمین نفوذپذیری نهایی خاک‌ها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)
title_fullStr تخمین نفوذپذیری نهایی خاک‌ها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)
title_full_unstemmed تخمین نفوذپذیری نهایی خاک‌ها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)
title_short تخمین نفوذپذیری نهایی خاک‌ها با استفاده از مدل شبکه عصبی مصنوعی (مطالعه موردی: مزرعه پردیس ابوریحان)
title_sort تخمین نفوذپذیری نهایی خاک‌ها با استفاده از مدل شبکه عصبی مصنوعی مطالعه موردی مزرعه پردیس ابوریحان
url https://jwsc.gau.ac.ir/article_579_3225106d274c2d35cfaa89400acad0d1.pdf