Hybrid Iterative Scheme for Triple Hierarchical Variational Inequalities with Mixed Equilibrium, Variational Inclusion, and Minimization Constraints

We introduce and analyze a hybrid iterative algorithm by combining Korpelevich's extragradient method, the hybrid steepest-descent method, and the averaged mapping approach to the gradient-projection algorithm. It is proven that, under appropriate assumptions, the proposed algorithm converges s...

Full description

Saved in:
Bibliographic Details
Main Authors: Lu-Chuan Ceng, Cheng-Wen Liao, Chin-Tzong Pang, Ching-Feng Wen
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/767109
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce and analyze a hybrid iterative algorithm by combining Korpelevich's extragradient method, the hybrid steepest-descent method, and the averaged mapping approach to the gradient-projection algorithm. It is proven that, under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of finitely many nonexpansive mappings, the solution set of a generalized mixed equilibrium problem (GMEP), the solution set of finitely many variational inclusions, and the solution set of a convex minimization problem (CMP), which is also a unique solution of a triple hierarchical variational inequality (THVI) in a real Hilbert space. In addition, we also consider the application of the proposed algorithm to solving a hierarchical variational inequality problem with constraints of the GMEP, the CMP, and finitely many variational inclusions.
ISSN:1085-3375
1687-0409