A new-to-nature photosynthesis system enhances utilization of one-carbon substrates in Escherichia coli
Abstract Photosynthesis harvests solar energy to convert CO2 into chemicals, offering a potential solution to reduce atmospheric CO2. However, integrating photosynthesis into non-photosynthetic microbes to utilize one-carbon substrates is challenging. Here, a photosynthesis system is reconstructed i...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-55498-y |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Photosynthesis harvests solar energy to convert CO2 into chemicals, offering a potential solution to reduce atmospheric CO2. However, integrating photosynthesis into non-photosynthetic microbes to utilize one-carbon substrates is challenging. Here, a photosynthesis system is reconstructed in E. coli, by integrating light and dark reaction to synthesize bioproducts from one-carbon substrates. A light reaction is reconstructed using the photosystem of photosynthetic bacteria, increasing ATP and NADH contents by 337.9% and 383.7%, respectively. A dark reaction is constructed by designing CO2 fixation pathway to synthesize pyruvate. By assembling the light and dark reaction, a photosynthesis system is established and further programmed by installing an energy adapter, enabling the production of acetone, malate, and α-ketoglutarate, with a negative carbon footprint of −0.84 ~ −0.23 kgCO2e/kg product. Furthermore, light-driven one-carbon trophic growth of E. coli is achieved with a doubling time of 19.86 h. This photosynthesis system provides a green and sustainable approach to enhance one-carbon substrates utilization in the future. |
---|---|
ISSN: | 2041-1723 |