Infinitely many solutions for an anisotropic differential inclusion on unbounded domains

The problem deals with the anisotropic $p(x)$-Laplacian operator where $p_i$ are Lipschitz continuous functions $2\leq p_i(x)<N$ for all $x\in \mathbb{R}^N$ and $i\in\{1,\dots,N\}$. Assume $p^o_N(x)=\max_{1\leq i\leq N} p_i(x)$, $a\in L^1_+(\mathbb{R}^N)\cap L^{\frac{N}{p^o_N(x)-1}}(\mathbb{R}^N)...

Full description

Saved in:
Bibliographic Details
Main Authors: Giovany Figueiredo, Abdolrahman Razani
Format: Article
Language:English
Published: University of Szeged 2024-07-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11060
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem deals with the anisotropic $p(x)$-Laplacian operator where $p_i$ are Lipschitz continuous functions $2\leq p_i(x)<N$ for all $x\in \mathbb{R}^N$ and $i\in\{1,\dots,N\}$. Assume $p^o_N(x)=\max_{1\leq i\leq N} p_i(x)$, $a\in L^1_+(\mathbb{R}^N)\cap L^{\frac{N}{p^o_N(x)-1}}(\mathbb{R}^N)$, $F(x,t)$ is locally Lipschitz in the $t$-variable integrand and $\partial F(x,t)$ is the subdifferential with respect to the $t$-variable in the sense of Clarke. By establishing the existence of infinitely many solutions, we achieve a first result within the anisotropic framework.
ISSN:1417-3875