Research on AUV Multi-Node Networking Communication Based on Underwater Electric Field CSMA/CA Channel
To address the issues of high attenuation, weak reception signal, and channel blockage in the current electric field communication of underwater robots, research on autonomous underwater vehicle (AUV) multi-node networking communication based on underwater electric field Carrier Sense Multiple Acces...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-10-01
|
Series: | Biomimetics |
Subjects: | |
Online Access: | https://www.mdpi.com/2313-7673/9/11/653 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To address the issues of high attenuation, weak reception signal, and channel blockage in the current electric field communication of underwater robots, research on autonomous underwater vehicle (AUV) multi-node networking communication based on underwater electric field Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) channel was conducted. This article, first through simulation, finds that the Optimized Link State Routing (OLSR) protocol has a smaller routing packet delay time and higher reliability compared to the Ad Hoc On-Demand Distance Vector (AODV) protocol on underwater electric field CSMA/CA channels. Then, a 2FSK underwater electric field communication system was established, and dynamic communication experiments were carried out between two AUV nodes. The experimental results showed that within a range of 0 to 3.5 m, this system can achieve underwater dynamic electric field communication with a bit error rate of 0 to 0.628%. Finally, to avoid channel blockage during underwater AUV multi-node communication, this article proposes a dynamic backoff method for AUV multi-node communication based on CSMA/CA. This system can achieve dynamic multi-node communication of underwater electric fields with an error rate ranging from 0 to 0.96%. The research results have engineering application prospects for underwater cluster operations. |
---|---|
ISSN: | 2313-7673 |