On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations
Here we investigate the behavior of the analytical and numerical solution of a nonlinear second kind Volterra integral equation where the linear part of the kernel has a constant sign and we provide conditions for the boundedness or decay of solutions and approximate solutions obtained by Volterra R...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2010-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2010/862538 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849306361636061184 |
|---|---|
| author | E. Messina Y. Muroya E. Russo A. Vecchio |
| author_facet | E. Messina Y. Muroya E. Russo A. Vecchio |
| author_sort | E. Messina |
| collection | DOAJ |
| description | Here we investigate the behavior of the analytical and numerical solution of a
nonlinear second kind Volterra integral equation where the linear part of the kernel
has a constant sign and we provide conditions for the boundedness or decay of solutions
and approximate solutions obtained by Volterra Runge-Kutta and Direct Quadrature methods. |
| format | Article |
| id | doaj-art-2edd89f00f904c81a4776c949d0d69d8 |
| institution | Kabale University |
| issn | 1026-0226 1607-887X |
| language | English |
| publishDate | 2010-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Discrete Dynamics in Nature and Society |
| spelling | doaj-art-2edd89f00f904c81a4776c949d0d69d82025-08-20T03:55:07ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2010-01-01201010.1155/2010/862538862538On the Stability of Numerical Methods for Nonlinear Volterra Integral EquationsE. Messina0Y. Muroya1E. Russo2A. Vecchio3Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126 Napoli, ItalyDepartment of Mathematics, Waseda University, 3-4-1 Ohkubo Shinjuku-ku, Tokyo, 169-8555, JapanDipartimento di Matematica e Applicazioni, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126 Napoli, ItalyIstituto per le Applicazioni del Calcolo “M.Picone”, Sede di Napoli, CNR, Via P. Castellino, 80131 Napoli, ItalyHere we investigate the behavior of the analytical and numerical solution of a nonlinear second kind Volterra integral equation where the linear part of the kernel has a constant sign and we provide conditions for the boundedness or decay of solutions and approximate solutions obtained by Volterra Runge-Kutta and Direct Quadrature methods.http://dx.doi.org/10.1155/2010/862538 |
| spellingShingle | E. Messina Y. Muroya E. Russo A. Vecchio On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations Discrete Dynamics in Nature and Society |
| title | On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations |
| title_full | On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations |
| title_fullStr | On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations |
| title_full_unstemmed | On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations |
| title_short | On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations |
| title_sort | on the stability of numerical methods for nonlinear volterra integral equations |
| url | http://dx.doi.org/10.1155/2010/862538 |
| work_keys_str_mv | AT emessina onthestabilityofnumericalmethodsfornonlinearvolterraintegralequations AT ymuroya onthestabilityofnumericalmethodsfornonlinearvolterraintegralequations AT erusso onthestabilityofnumericalmethodsfornonlinearvolterraintegralequations AT avecchio onthestabilityofnumericalmethodsfornonlinearvolterraintegralequations |