On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations

Here we investigate the behavior of the analytical and numerical solution of a nonlinear second kind Volterra integral equation where the linear part of the kernel has a constant sign and we provide conditions for the boundedness or decay of solutions and approximate solutions obtained by Volterra R...

Full description

Saved in:
Bibliographic Details
Main Authors: E. Messina, Y. Muroya, E. Russo, A. Vecchio
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2010/862538
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849306361636061184
author E. Messina
Y. Muroya
E. Russo
A. Vecchio
author_facet E. Messina
Y. Muroya
E. Russo
A. Vecchio
author_sort E. Messina
collection DOAJ
description Here we investigate the behavior of the analytical and numerical solution of a nonlinear second kind Volterra integral equation where the linear part of the kernel has a constant sign and we provide conditions for the boundedness or decay of solutions and approximate solutions obtained by Volterra Runge-Kutta and Direct Quadrature methods.
format Article
id doaj-art-2edd89f00f904c81a4776c949d0d69d8
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2010-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-2edd89f00f904c81a4776c949d0d69d82025-08-20T03:55:07ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2010-01-01201010.1155/2010/862538862538On the Stability of Numerical Methods for Nonlinear Volterra Integral EquationsE. Messina0Y. Muroya1E. Russo2A. Vecchio3Dipartimento di Matematica e Applicazioni, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126 Napoli, ItalyDepartment of Mathematics, Waseda University, 3-4-1 Ohkubo Shinjuku-ku, Tokyo, 169-8555, JapanDipartimento di Matematica e Applicazioni, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126 Napoli, ItalyIstituto per le Applicazioni del Calcolo “M.Picone”, Sede di Napoli, CNR, Via P. Castellino, 80131 Napoli, ItalyHere we investigate the behavior of the analytical and numerical solution of a nonlinear second kind Volterra integral equation where the linear part of the kernel has a constant sign and we provide conditions for the boundedness or decay of solutions and approximate solutions obtained by Volterra Runge-Kutta and Direct Quadrature methods.http://dx.doi.org/10.1155/2010/862538
spellingShingle E. Messina
Y. Muroya
E. Russo
A. Vecchio
On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations
Discrete Dynamics in Nature and Society
title On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations
title_full On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations
title_fullStr On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations
title_full_unstemmed On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations
title_short On the Stability of Numerical Methods for Nonlinear Volterra Integral Equations
title_sort on the stability of numerical methods for nonlinear volterra integral equations
url http://dx.doi.org/10.1155/2010/862538
work_keys_str_mv AT emessina onthestabilityofnumericalmethodsfornonlinearvolterraintegralequations
AT ymuroya onthestabilityofnumericalmethodsfornonlinearvolterraintegralequations
AT erusso onthestabilityofnumericalmethodsfornonlinearvolterraintegralequations
AT avecchio onthestabilityofnumericalmethodsfornonlinearvolterraintegralequations