In Vivo Validation of a Metacarpophalangeal Joint Orthotic Using Wearable Inertial Sensors in Horses

Orthotics are often used to support the metacarpophalangeal joint (MCPj) in horses recovering from soft tissue injury; however, their effect on the MCPj biomechanics remain largely underexplored. The MCPj moves primarily in the sagittal plane, flexing during the swing phase and extending during the...

Full description

Saved in:
Bibliographic Details
Main Authors: Eleonora Pagliara, Federica Cantatore, Livio Penazzi, Barbara Riccio, Andrea Bertuglia
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/15/13/1965
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Orthotics are often used to support the metacarpophalangeal joint (MCPj) in horses recovering from soft tissue injury; however, their effect on the MCPj biomechanics remain largely underexplored. The MCPj moves primarily in the sagittal plane, flexing during the swing phase and extending during the stance phase. The suspensory ligament and flexor tendons act as biological springs resisting MCPj extension. Injuries to these structures are common and, although early mobilization promotes their healing, controlled loading may be beneficial during rehabilitation. This study aims to evaluate the efficacy of a semirigid orthotic in limiting the MCPj extension and the MCPj range of motion, and its influence on the MCPj kinematics. Twelve healthy horses were equipped with portable inertial sensors on the distal limb. The MCPj extension and the MCPj range of motion were assessed during walking and trotting without the orthotic (S0) and with the orthotic using two different support settings (S1 and S4). Data were evaluated for normality and homoscedasticity. A Student <i>t</i>-test was used to compare the MCPj angle pattern of the two forelimbs of each horse at the baseline. Data were analysed using one-way ANOVA to compare the mean values across conditions, followed by paired <i>t</i>-tests for post-hoc comparison (significance set at <i>p</i> < 0.05). The results showed significant reductions in both the MCPj extension and the MCPj range of motion, with the greatest restriction occurring at the highest support setting. These results suggest that the semirigid orthotic limits the MCPj movement in the sagittal plane and consequently the load on the suspensory ligament and flexor tendons. Therefore, this orthotic device is an effective tool during rehabilitation for forelimb tendon and ligament injuries.
ISSN:2076-2615