Kinetics, adsorption mechanism, and economic viability of an eco-friendly amorphous carbon thin-film adsorbent synthesized from agricultural waste for removal of 2,4-dichlorophenol and 2,4,6-trichlorophenol in water environment
This study developed a new adsorbent (HPL-ACTF) from agricultural waste, specifically leaves of Hamelia patens Jacq. The batch experiment examined the operating conditions including pH, temperature, contact time, and adsorbate concentrations to determine the maximum adsorption potential. The novel a...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-12-01
|
| Series: | Case Studies in Chemical and Environmental Engineering |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2666016425001756 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study developed a new adsorbent (HPL-ACTF) from agricultural waste, specifically leaves of Hamelia patens Jacq. The batch experiment examined the operating conditions including pH, temperature, contact time, and adsorbate concentrations to determine the maximum adsorption potential. The novel adsorbent demonstrated the adsorption capacities of 273.25 mg/g for 2,4,6-TCP and 232.47 mg/g for 2,4-DCP. The adsorption characteristics were evaluated using Langmuir, Freundlich, and Temkin isotherm models. The Langmuir model provided the best fit for both adsorbates. Kinetic analysis indicated that adsorption followed a pseudo-second-order model, and regeneration studies confirmed that HPL-ACTF could be effectively reused for up to five cycles. |
|---|---|
| ISSN: | 2666-0164 |