Fabrication of Ag@Cr Core-Shell Nano Composites for NO2 Gas Sensing Application
In this work, Ag and Ag@Cr nanoparticles were fabricated utilizing the plasma jet and chemical spray deposition approach to produce thin films of Ag and Ag@Cr. The optimal gas-detecting properties can be achieved by varying the ratios of Ag@Cr (4:6, 2:8, 3:7) ml and 10 ml Ag. XRD, transmission elec...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
University of Baghdad
2025-06-01
|
| Series: | Iraqi Journal of Physics |
| Subjects: | |
| Online Access: | https://ijp.uobaghdad.edu.iq/index.php/physics/article/view/1343 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this work, Ag and Ag@Cr nanoparticles were fabricated utilizing the plasma jet and chemical spray deposition approach to produce thin films of Ag and Ag@Cr. The optimal gas-detecting properties can be achieved by varying the ratios of Ag@Cr (4:6, 2:8, 3:7) ml and 10 ml Ag. XRD, transmission electron microscopy (TEM), and UV-Vis spectroscopy were used to characterize the Ag and Ag@Cr thin films. Additionally, an absorption peak appears at 422 nm for Ag, and the absorption peaks for Ag@Cr are at 408, 413, and 410 nm, with a polycrystalline character as seen from the XRD pattern. The gas NO₂ was used to check how sensitive, responsive, and quickly recoverable the Ag and Ag@Cr nanocomposite thin films are. According to the findings, at 150 °C, the optimal Ag@Cr ratio was 3:7 with 26% sensitivity. At 150 °C, pure silver's sensitivity was 32%, and it was concluded that chromium has low sensitivity. The results of the Hall effect test indicated that the material is p-type at all ratios.
|
|---|---|
| ISSN: | 2070-4003 2664-5548 |