Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces
Abstract Advancing Silicon (Si) technology beyond Moore's law through 3D architectures requires highly efficient heat management methods compatible with foundry processes. While continued increases in transistor density can be achieved through 3D architectures, self‐heating in the upper tiers d...
Saved in:
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley-VCH
2025-01-01
|
Series: | Advanced Electronic Materials |
Subjects: | |
Online Access: | https://doi.org/10.1002/aelm.202400146 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841548906237788160 |
---|---|
author | Mohamadali Malakoutian Kelly Woo Dennis Rich Ramandeep Mandia Xiang Zheng Anna Kasperovich Devansh Saraswat Rohith Soman Youhwan Jo Thomas Pfeifer Taesoon Hwang Henry Aller Jeongkyu Kim Junrui Lyu Janelle Keionna Mabrey Thomas Andres Rodriguez James Pomeroy Patrick E. Hopkins Samuel Graham David J. Smith Subhasish Mitra Kyeongjae Cho Martin Kuball Srabanti Chowdhury |
author_facet | Mohamadali Malakoutian Kelly Woo Dennis Rich Ramandeep Mandia Xiang Zheng Anna Kasperovich Devansh Saraswat Rohith Soman Youhwan Jo Thomas Pfeifer Taesoon Hwang Henry Aller Jeongkyu Kim Junrui Lyu Janelle Keionna Mabrey Thomas Andres Rodriguez James Pomeroy Patrick E. Hopkins Samuel Graham David J. Smith Subhasish Mitra Kyeongjae Cho Martin Kuball Srabanti Chowdhury |
author_sort | Mohamadali Malakoutian |
collection | DOAJ |
description | Abstract Advancing Silicon (Si) technology beyond Moore's law through 3D architectures requires highly efficient heat management methods compatible with foundry processes. While continued increases in transistor density can be achieved through 3D architectures, self‐heating in the upper tiers degrades the performance. Self‐heating is a critical problem for high‐power, high‐frequency, wide bandgap, and ultra‐wide bandgap devices as well. Diamond, known for its exceptional thermal conductivity, offers a viable solution in both these cases. Since thermal boundary resistance (between the channel/junction and diamond plays a crucial role in overall thermal resistance, this study investigates various dielectrics for interface engineering, such as Silicon dioxide (SiO2), amorphous‐ Silicon Carbide (a‐SiC), and Silicon Nitride (SiNx), to make a phonon bridge at gallium nitride (GaN)‐diamond and Si‐diamond interfaces. The a‐SiC interlayer reduces diamond/GaN (<5 m2K per GW) and diamond/Si (<2 m2K per GW) thermal boundary resistances by linking low‐ and high‐frequency phonons, boosting phonon transport through the interface. Engineered interfaces enhance heat spreading from the channel/junction and rule out premature failure. |
format | Article |
id | doaj-art-2cc8165ae16145dc8ae29347fb4dadca |
institution | Kabale University |
issn | 2199-160X |
language | English |
publishDate | 2025-01-01 |
publisher | Wiley-VCH |
record_format | Article |
series | Advanced Electronic Materials |
spelling | doaj-art-2cc8165ae16145dc8ae29347fb4dadca2025-01-10T13:40:16ZengWiley-VCHAdvanced Electronic Materials2199-160X2025-01-01111n/an/a10.1002/aelm.202400146Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond InterfacesMohamadali Malakoutian0Kelly Woo1Dennis Rich2Ramandeep Mandia3Xiang Zheng4Anna Kasperovich5Devansh Saraswat6Rohith Soman7Youhwan Jo8Thomas Pfeifer9Taesoon Hwang10Henry Aller11Jeongkyu Kim12Junrui Lyu13Janelle Keionna Mabrey14Thomas Andres Rodriguez15James Pomeroy16Patrick E. Hopkins17Samuel Graham18David J. Smith19Subhasish Mitra20Kyeongjae Cho21Martin Kuball22Srabanti Chowdhury23Stanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAArizona State University 1151 S Forest Ave Tempe AZ 85287 USAUniversity of Bristol Tyndall Avenue Bristol BS8 1TL UKStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAUniversity of Texas at Dallas 800 W. Campbell Road Richardson TX 75080 USAUniversity of Virginia 351 McCormick Road Charlottesville VA 22904 USAUniversity of Texas at Dallas 800 W. Campbell Road Richardson TX 75080 USAUniversity of Maryland College Park MD 20742 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAUniversity of Bristol Tyndall Avenue Bristol BS8 1TL UKUniversity of Virginia 351 McCormick Road Charlottesville VA 22904 USAUniversity of Maryland College Park MD 20742 USAArizona State University 1151 S Forest Ave Tempe AZ 85287 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAUniversity of Texas at Dallas 800 W. Campbell Road Richardson TX 75080 USAUniversity of Bristol Tyndall Avenue Bristol BS8 1TL UKStanford University 450 Jane Stanford Way Stanford CA 94305 USAAbstract Advancing Silicon (Si) technology beyond Moore's law through 3D architectures requires highly efficient heat management methods compatible with foundry processes. While continued increases in transistor density can be achieved through 3D architectures, self‐heating in the upper tiers degrades the performance. Self‐heating is a critical problem for high‐power, high‐frequency, wide bandgap, and ultra‐wide bandgap devices as well. Diamond, known for its exceptional thermal conductivity, offers a viable solution in both these cases. Since thermal boundary resistance (between the channel/junction and diamond plays a crucial role in overall thermal resistance, this study investigates various dielectrics for interface engineering, such as Silicon dioxide (SiO2), amorphous‐ Silicon Carbide (a‐SiC), and Silicon Nitride (SiNx), to make a phonon bridge at gallium nitride (GaN)‐diamond and Si‐diamond interfaces. The a‐SiC interlayer reduces diamond/GaN (<5 m2K per GW) and diamond/Si (<2 m2K per GW) thermal boundary resistances by linking low‐ and high‐frequency phonons, boosting phonon transport through the interface. Engineered interfaces enhance heat spreading from the channel/junction and rule out premature failure.https://doi.org/10.1002/aelm.202400146diamondinterface engineeringMoore's lawthermal boundary resistancethermal managementultra‐wide‐bandgap |
spellingShingle | Mohamadali Malakoutian Kelly Woo Dennis Rich Ramandeep Mandia Xiang Zheng Anna Kasperovich Devansh Saraswat Rohith Soman Youhwan Jo Thomas Pfeifer Taesoon Hwang Henry Aller Jeongkyu Kim Junrui Lyu Janelle Keionna Mabrey Thomas Andres Rodriguez James Pomeroy Patrick E. Hopkins Samuel Graham David J. Smith Subhasish Mitra Kyeongjae Cho Martin Kuball Srabanti Chowdhury Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces Advanced Electronic Materials diamond interface engineering Moore's law thermal boundary resistance thermal management ultra‐wide‐bandgap |
title | Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces |
title_full | Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces |
title_fullStr | Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces |
title_full_unstemmed | Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces |
title_short | Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces |
title_sort | lossless phonon transition through gan diamond and si diamond interfaces |
topic | diamond interface engineering Moore's law thermal boundary resistance thermal management ultra‐wide‐bandgap |
url | https://doi.org/10.1002/aelm.202400146 |
work_keys_str_mv | AT mohamadalimalakoutian losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT kellywoo losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT dennisrich losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT ramandeepmandia losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT xiangzheng losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT annakasperovich losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT devanshsaraswat losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT rohithsoman losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT youhwanjo losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT thomaspfeifer losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT taesoonhwang losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT henryaller losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT jeongkyukim losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT junruilyu losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT janellekeionnamabrey losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT thomasandresrodriguez losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT jamespomeroy losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT patrickehopkins losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT samuelgraham losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT davidjsmith losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT subhasishmitra losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT kyeongjaecho losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT martinkuball losslessphonontransitionthroughgandiamondandsidiamondinterfaces AT srabantichowdhury losslessphonontransitionthroughgandiamondandsidiamondinterfaces |