Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces

Abstract Advancing Silicon (Si) technology beyond Moore's law through 3D architectures requires highly efficient heat management methods compatible with foundry processes. While continued increases in transistor density can be achieved through 3D architectures, self‐heating in the upper tiers d...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohamadali Malakoutian, Kelly Woo, Dennis Rich, Ramandeep Mandia, Xiang Zheng, Anna Kasperovich, Devansh Saraswat, Rohith Soman, Youhwan Jo, Thomas Pfeifer, Taesoon Hwang, Henry Aller, Jeongkyu Kim, Junrui Lyu, Janelle Keionna Mabrey, Thomas Andres Rodriguez, James Pomeroy, Patrick E. Hopkins, Samuel Graham, David J. Smith, Subhasish Mitra, Kyeongjae Cho, Martin Kuball, Srabanti Chowdhury
Format: Article
Language:English
Published: Wiley-VCH 2025-01-01
Series:Advanced Electronic Materials
Subjects:
Online Access:https://doi.org/10.1002/aelm.202400146
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841548906237788160
author Mohamadali Malakoutian
Kelly Woo
Dennis Rich
Ramandeep Mandia
Xiang Zheng
Anna Kasperovich
Devansh Saraswat
Rohith Soman
Youhwan Jo
Thomas Pfeifer
Taesoon Hwang
Henry Aller
Jeongkyu Kim
Junrui Lyu
Janelle Keionna Mabrey
Thomas Andres Rodriguez
James Pomeroy
Patrick E. Hopkins
Samuel Graham
David J. Smith
Subhasish Mitra
Kyeongjae Cho
Martin Kuball
Srabanti Chowdhury
author_facet Mohamadali Malakoutian
Kelly Woo
Dennis Rich
Ramandeep Mandia
Xiang Zheng
Anna Kasperovich
Devansh Saraswat
Rohith Soman
Youhwan Jo
Thomas Pfeifer
Taesoon Hwang
Henry Aller
Jeongkyu Kim
Junrui Lyu
Janelle Keionna Mabrey
Thomas Andres Rodriguez
James Pomeroy
Patrick E. Hopkins
Samuel Graham
David J. Smith
Subhasish Mitra
Kyeongjae Cho
Martin Kuball
Srabanti Chowdhury
author_sort Mohamadali Malakoutian
collection DOAJ
description Abstract Advancing Silicon (Si) technology beyond Moore's law through 3D architectures requires highly efficient heat management methods compatible with foundry processes. While continued increases in transistor density can be achieved through 3D architectures, self‐heating in the upper tiers degrades the performance. Self‐heating is a critical problem for high‐power, high‐frequency, wide bandgap, and ultra‐wide bandgap devices as well. Diamond, known for its exceptional thermal conductivity, offers a viable solution in both these cases. Since thermal boundary resistance (between the channel/junction and diamond plays a crucial role in overall thermal resistance, this study investigates various dielectrics for interface engineering, such as Silicon dioxide (SiO2), amorphous‐ Silicon Carbide (a‐SiC), and Silicon Nitride (SiNx), to make a phonon bridge at gallium nitride (GaN)‐diamond and Si‐diamond interfaces. The a‐SiC interlayer reduces diamond/GaN (<5 m2K per GW) and diamond/Si (<2 m2K per GW) thermal boundary resistances by linking low‐ and high‐frequency phonons, boosting phonon transport through the interface. Engineered interfaces enhance heat spreading from the channel/junction and rule out premature failure.
format Article
id doaj-art-2cc8165ae16145dc8ae29347fb4dadca
institution Kabale University
issn 2199-160X
language English
publishDate 2025-01-01
publisher Wiley-VCH
record_format Article
series Advanced Electronic Materials
spelling doaj-art-2cc8165ae16145dc8ae29347fb4dadca2025-01-10T13:40:16ZengWiley-VCHAdvanced Electronic Materials2199-160X2025-01-01111n/an/a10.1002/aelm.202400146Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond InterfacesMohamadali Malakoutian0Kelly Woo1Dennis Rich2Ramandeep Mandia3Xiang Zheng4Anna Kasperovich5Devansh Saraswat6Rohith Soman7Youhwan Jo8Thomas Pfeifer9Taesoon Hwang10Henry Aller11Jeongkyu Kim12Junrui Lyu13Janelle Keionna Mabrey14Thomas Andres Rodriguez15James Pomeroy16Patrick E. Hopkins17Samuel Graham18David J. Smith19Subhasish Mitra20Kyeongjae Cho21Martin Kuball22Srabanti Chowdhury23Stanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAArizona State University 1151 S Forest Ave Tempe AZ 85287 USAUniversity of Bristol Tyndall Avenue Bristol BS8 1TL UKStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAUniversity of Texas at Dallas 800 W. Campbell Road Richardson TX 75080 USAUniversity of Virginia 351 McCormick Road Charlottesville VA 22904 USAUniversity of Texas at Dallas 800 W. Campbell Road Richardson TX 75080 USAUniversity of Maryland College Park MD 20742 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAUniversity of Bristol Tyndall Avenue Bristol BS8 1TL UKUniversity of Virginia 351 McCormick Road Charlottesville VA 22904 USAUniversity of Maryland College Park MD 20742 USAArizona State University 1151 S Forest Ave Tempe AZ 85287 USAStanford University 450 Jane Stanford Way Stanford CA 94305 USAUniversity of Texas at Dallas 800 W. Campbell Road Richardson TX 75080 USAUniversity of Bristol Tyndall Avenue Bristol BS8 1TL UKStanford University 450 Jane Stanford Way Stanford CA 94305 USAAbstract Advancing Silicon (Si) technology beyond Moore's law through 3D architectures requires highly efficient heat management methods compatible with foundry processes. While continued increases in transistor density can be achieved through 3D architectures, self‐heating in the upper tiers degrades the performance. Self‐heating is a critical problem for high‐power, high‐frequency, wide bandgap, and ultra‐wide bandgap devices as well. Diamond, known for its exceptional thermal conductivity, offers a viable solution in both these cases. Since thermal boundary resistance (between the channel/junction and diamond plays a crucial role in overall thermal resistance, this study investigates various dielectrics for interface engineering, such as Silicon dioxide (SiO2), amorphous‐ Silicon Carbide (a‐SiC), and Silicon Nitride (SiNx), to make a phonon bridge at gallium nitride (GaN)‐diamond and Si‐diamond interfaces. The a‐SiC interlayer reduces diamond/GaN (<5 m2K per GW) and diamond/Si (<2 m2K per GW) thermal boundary resistances by linking low‐ and high‐frequency phonons, boosting phonon transport through the interface. Engineered interfaces enhance heat spreading from the channel/junction and rule out premature failure.https://doi.org/10.1002/aelm.202400146diamondinterface engineeringMoore's lawthermal boundary resistancethermal managementultra‐wide‐bandgap
spellingShingle Mohamadali Malakoutian
Kelly Woo
Dennis Rich
Ramandeep Mandia
Xiang Zheng
Anna Kasperovich
Devansh Saraswat
Rohith Soman
Youhwan Jo
Thomas Pfeifer
Taesoon Hwang
Henry Aller
Jeongkyu Kim
Junrui Lyu
Janelle Keionna Mabrey
Thomas Andres Rodriguez
James Pomeroy
Patrick E. Hopkins
Samuel Graham
David J. Smith
Subhasish Mitra
Kyeongjae Cho
Martin Kuball
Srabanti Chowdhury
Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces
Advanced Electronic Materials
diamond
interface engineering
Moore's law
thermal boundary resistance
thermal management
ultra‐wide‐bandgap
title Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces
title_full Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces
title_fullStr Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces
title_full_unstemmed Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces
title_short Lossless Phonon Transition Through GaN‐Diamond and Si‐Diamond Interfaces
title_sort lossless phonon transition through gan diamond and si diamond interfaces
topic diamond
interface engineering
Moore's law
thermal boundary resistance
thermal management
ultra‐wide‐bandgap
url https://doi.org/10.1002/aelm.202400146
work_keys_str_mv AT mohamadalimalakoutian losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT kellywoo losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT dennisrich losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT ramandeepmandia losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT xiangzheng losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT annakasperovich losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT devanshsaraswat losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT rohithsoman losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT youhwanjo losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT thomaspfeifer losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT taesoonhwang losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT henryaller losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT jeongkyukim losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT junruilyu losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT janellekeionnamabrey losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT thomasandresrodriguez losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT jamespomeroy losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT patrickehopkins losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT samuelgraham losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT davidjsmith losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT subhasishmitra losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT kyeongjaecho losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT martinkuball losslessphonontransitionthroughgandiamondandsidiamondinterfaces
AT srabantichowdhury losslessphonontransitionthroughgandiamondandsidiamondinterfaces