Few-Shot Metric Learning with Time-Frequency Fusion for Specific Emitter Identification
Specific emitter identification (SEI) is a promising physical-layer authentication technique that serves as a crucial complement to upper-layer authentication mechanisms. SEI capitalizes on the inherent radio frequency fingerprints stemming from circuit discrepancies, which are intrinsic hardware pr...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/16/24/4635 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Specific emitter identification (SEI) is a promising physical-layer authentication technique that serves as a crucial complement to upper-layer authentication mechanisms. SEI capitalizes on the inherent radio frequency fingerprints stemming from circuit discrepancies, which are intrinsic hardware properties and challenging to counterfeit. Recently, various deep learning (DL)-based SEI methods have been proposed, achieving outstanding performance. However, collecting and annotating substantial data for novel or unknown radiation sources is not only time-consuming but also cost-intensive. To address this issue, this paper proposes a few-shot (FS) metric learning-based time-frequency fusion network. To enhance the discriminative capability for radiation source signals, the model employs a convolutional block attention module (CBAM) and feature transformation to effectively fuse the raw signal’s time domain and time-frequency domain representations. Furthermore, to improve the extraction of discriminative features under FS scenarios, the proxy-anchor loss and center loss are introduced to reinforce intra-class compactness and inter-class separability. Experiments on the ADS-B and Wi-Fi datasets demonstrate that the proposed TFAF-Net consistently outperforms existing models in FS-SEI tasks. On the ADS-B dataset, TFAF-Net achieves a 9.59% higher accuracy in 30-way 1-shot classification compared to the second-best model, and reaches an accuracy of 85.02% in 10-way classification. On the Wi-Fi dataset, TFAF-Net attains 90.39% accuracy in 5-way 1-shot classification, outperforming the next best model by 6.28%, and shows a 13.18% improvement in 6-way classification. |
|---|---|
| ISSN: | 2072-4292 |