Evolution of deformation mechanisms and their orientation dependence in fine-grained Mg-3Gd during tension

Magnesium alloys usually exhibit poor ductility attributed to their intrinsic hexagonal close-packed (hcp) structure, which fails to provide sufficient independent slip systems for homogeneous deformation. Here we demonstrate that multiple deformation mechanisms can be activated with increasing tens...

Full description

Saved in:
Bibliographic Details
Main Authors: Faping Hu, Tianbo Yu, Hao Chen, Fang Han, Keshun Dai, Fangcheng Qiu, Weidong Xie, Xiaoxu Huang
Format: Article
Language:English
Published: KeAi Communications Co., Ltd. 2024-12-01
Series:Journal of Magnesium and Alloys
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S221395672400121X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Magnesium alloys usually exhibit poor ductility attributed to their intrinsic hexagonal close-packed (hcp) structure, which fails to provide sufficient independent slip systems for homogeneous deformation. Here we demonstrate that multiple deformation mechanisms can be activated with increasing tensile strain in a fine-grained Mg-3Gd with a weak basal texture. 〈c + a〉 slip, tension twinning and compression/double twinning exhibit a high orientation dependence at an early stage of deformation, whereas the orientation dependence becomes less obvious with further increasing strain. The high work hardening rate at the strain of 2%–5% is accompanied by the significant increase of 〈c + a〉 slip and tension twinning activities. The fine microstructure strongly restricts the activation and growth of twinning, resulting in a slow exhaust of tension twinning and thin compression twins. The restriction of twinning and the activation of profuse 〈c + a〉 slip near grain/twin boundaries, relaxing the stress concentration, sustain the homogeneous deformation to a high strain.
ISSN:2213-9567