On Polynomials Associated with Finite Topologies

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> be a topology on the finite set <inline-formula><math xmlns="http://www.w3...

Full description

Saved in:
Bibliographic Details
Main Authors: Moussa Benoumhani, Brahim Chaourar
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/2/103
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849720242636324864
author Moussa Benoumhani
Brahim Chaourar
author_facet Moussa Benoumhani
Brahim Chaourar
author_sort Moussa Benoumhani
collection DOAJ
description Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> be a topology on the finite set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>X</mi><mi>n</mi></msub></semantics></math></inline-formula>. We consider the open-set polynomial associated with the topology <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>. Its coefficients are the cardinalities of sets <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>j</mi></msub><mo>=</mo><msub><mi>U</mi><mi>j</mi></msub><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of open sets of size <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="0.277778em"></mspace><mo>…</mo><mo>,</mo><mspace width="0.277778em"></mspace><mi>n</mi><mo>.</mo></mrow></semantics></math></inline-formula> We prove that this polynomial has only real zeros only in the trivial case where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> is the discrete topology. Hence, we answer a question raised by J. Brown. We give a partial answer to the question: for which topology is this polynomial log-concave, or at least unimodal? More specifically, we prove that if the topology has a large number of open sets, its open polynomial is unimodal. The idea of degree of log-concavity is introduced and it is shown to be limited for polynomials of non-trivial topologies. Furthermore, the maximum-sized topologies that omit open sets of given sizes are derived. Moreover, all topologies over <i>n</i> points with at least <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mn>3</mn><mo>/</mo><mn>8</mn><mo>)</mo></mrow><msup><mn>2</mn><mi>n</mi></msup></mrow></semantics></math></inline-formula> open sets are proved to be unimodal, completing previous results.
format Article
id doaj-art-2ba9b922c1754e61b98f86a66b3bafd0
institution DOAJ
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-2ba9b922c1754e61b98f86a66b3bafd02025-08-20T03:11:58ZengMDPI AGAxioms2075-16802025-01-0114210310.3390/axioms14020103On Polynomials Associated with Finite TopologiesMoussa Benoumhani0Brahim Chaourar1Department of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11586, Saudi ArabiaDepartment of Mathematics and Statistics, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11586, Saudi ArabiaLet <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> be a topology on the finite set <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>X</mi><mi>n</mi></msub></semantics></math></inline-formula>. We consider the open-set polynomial associated with the topology <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula>. Its coefficients are the cardinalities of sets <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>U</mi><mi>j</mi></msub><mo>=</mo><msub><mi>U</mi><mi>j</mi></msub><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> of open sets of size <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>j</mi><mo>=</mo><mn>0</mn><mo>,</mo><mspace width="0.277778em"></mspace><mo>…</mo><mo>,</mo><mspace width="0.277778em"></mspace><mi>n</mi><mo>.</mo></mrow></semantics></math></inline-formula> We prove that this polynomial has only real zeros only in the trivial case where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>τ</mi></semantics></math></inline-formula> is the discrete topology. Hence, we answer a question raised by J. Brown. We give a partial answer to the question: for which topology is this polynomial log-concave, or at least unimodal? More specifically, we prove that if the topology has a large number of open sets, its open polynomial is unimodal. The idea of degree of log-concavity is introduced and it is shown to be limited for polynomials of non-trivial topologies. Furthermore, the maximum-sized topologies that omit open sets of given sizes are derived. Moreover, all topologies over <i>n</i> points with at least <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mn>3</mn><mo>/</mo><mn>8</mn><mo>)</mo></mrow><msup><mn>2</mn><mi>n</mi></msup></mrow></semantics></math></inline-formula> open sets are proved to be unimodal, completing previous results.https://www.mdpi.com/2075-1680/14/2/103finite topologylog-concavepolynomialunimodalzeros
spellingShingle Moussa Benoumhani
Brahim Chaourar
On Polynomials Associated with Finite Topologies
Axioms
finite topology
log-concave
polynomial
unimodal
zeros
title On Polynomials Associated with Finite Topologies
title_full On Polynomials Associated with Finite Topologies
title_fullStr On Polynomials Associated with Finite Topologies
title_full_unstemmed On Polynomials Associated with Finite Topologies
title_short On Polynomials Associated with Finite Topologies
title_sort on polynomials associated with finite topologies
topic finite topology
log-concave
polynomial
unimodal
zeros
url https://www.mdpi.com/2075-1680/14/2/103
work_keys_str_mv AT moussabenoumhani onpolynomialsassociatedwithfinitetopologies
AT brahimchaourar onpolynomialsassociatedwithfinitetopologies