Normalized ground-states for the Sobolev critical Kirchhoff equation with at least mass critical growth
In this article, we investigate the following nonlinear Kirchhoff equation with Sobolev critical growth: −a+b∫R3∣∇u∣2dxΔu+λu=μf(u)+∣u∣4u,inR3,u>0,∫R3∣u∣2dx=m2,inR3,(Pm)\left\{\begin{array}{l}-\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{3}}{| \nabla u| }^{2}{\rm{d}}x\right)\Delta...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
De Gruyter
2025-07-01
|
| Series: | Open Mathematics |
| Subjects: | |
| Online Access: | https://doi.org/10.1515/math-2025-0182 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this article, we investigate the following nonlinear Kirchhoff equation with Sobolev critical growth: −a+b∫R3∣∇u∣2dxΔu+λu=μf(u)+∣u∣4u,inR3,u>0,∫R3∣u∣2dx=m2,inR3,(Pm)\left\{\begin{array}{l}-\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{3}}{| \nabla u| }^{2}{\rm{d}}x\right)\Delta u+\lambda u=\mu f\left(u)+{| u| }^{4}u,\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3},\\ u\gt 0,\mathop{\displaystyle \int }\limits_{{{\mathbb{R}}}^{3}}{| u| }^{2}{\rm{d}}x={m}^{2},\hspace{1em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{3},\end{array}\right.\hspace{2.0em}\hspace{2.0em}\left({P}_{m}) where μ\mu is a positive parameter, a,b>0a,b\gt 0, and the frequency λ\lambda appears as a positive Lagrange multiplier. The nonlinearity ff is more general and satisfies Sobolev subcritical conditions. With the assistance of the Pohožaev constraints and the Sobolev subcritical approximation method, we have achieved a couple of the normalized ground-state solutions to (Pm)\left({P}_{m}) and the asymptotic behavior of the ground-state is also studied. |
|---|---|
| ISSN: | 2391-5455 |