From Single Shot to Structure: End-to-End Network-Based Deflectometry for Specular Free-Form Surface Reconstruction

Deflectometry is a key component in the precise measurement of specular (mirrored) surfaces; however, traditional methods often lack an end-to-end approach that performs 3D reconstruction in a single shot with high accuracy and generalizes across different free-form surfaces. This paper introduces a...

Full description

Saved in:
Bibliographic Details
Main Authors: M.Hadi Sepanj, Saed Moradi, Amir Nazemi, Claire Preston, Anthony M. D. Lee, Paul Fieguth
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/14/23/10824
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deflectometry is a key component in the precise measurement of specular (mirrored) surfaces; however, traditional methods often lack an end-to-end approach that performs 3D reconstruction in a single shot with high accuracy and generalizes across different free-form surfaces. This paper introduces a novel deep neural network (DNN)-based approach for end-to-end 3D reconstruction of free-form specular surfaces using single-shot deflectometry. Our proposed network, VUDNet, innovatively combines discriminative and generative components to accurately interpret orthogonal fringe patterns and generate high-fidelity 3D surface reconstructions. By leveraging a hybrid architecture integrating a Variational Autoencoder (VAE) and a modified U-Net, VUDNet excels in both depth estimation and detail refinement, achieving superior performance in challenging environments. Extensive data simulation using Blender leading to a dataset which we will make available, ensures robust training and enables the network to generalize across diverse scenarios. Experimental results demonstrate the strong performance of VUDNet, setting a new standard for 3D surface reconstruction.
ISSN:2076-3417