Multi-bump solutions of Schrödinger–Bopp–Podolsky system with steep potential well

In this paper, we study the existence of multi-bump solutions for the following Schrödinger–Bopp–Podolsky system with steep potential well: \begin{equation*} \begin{cases} -\Delta u+(\lambda V(x)+V_0(x))u+K(x)\phi u= |u|^{p-2}u, &x\in \mathbb{R}^3,\\ -\Delta \phi+a^2\Delta^2\phi=K(x) u^2, &...

Full description

Saved in:
Bibliographic Details
Main Authors: Li Wang, Jun Wang, Jixiu Wang
Format: Article
Language:English
Published: University of Szeged 2024-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10461
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841533472095600640
author Li Wang
Jun Wang
Jixiu Wang
author_facet Li Wang
Jun Wang
Jixiu Wang
author_sort Li Wang
collection DOAJ
description In this paper, we study the existence of multi-bump solutions for the following Schrödinger–Bopp–Podolsky system with steep potential well: \begin{equation*} \begin{cases} -\Delta u+(\lambda V(x)+V_0(x))u+K(x)\phi u= |u|^{p-2}u, &x\in \mathbb{R}^3,\\ -\Delta \phi+a^2\Delta^2\phi=K(x) u^2, &x\in \mathbb{R}^3, \end{cases} \end{equation*} where $p \in(4,6), a>0$ and $\lambda$ is a parameter. We require that $V(x) \geq 0$ and has a bounded potential well $\Omega=V^{-1}(0)$. Combining this with other suitable assumptions on $\Omega, V_{0}$ and $K$, when $\lambda$ is large enough, we obtain the existence of multi-bump-type solutions $u_{\lambda}$ by using variational methods.
format Article
id doaj-art-2a682290c4f04eabbe788b5369405de7
institution Kabale University
issn 1417-3875
language English
publishDate 2024-01-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj-art-2a682290c4f04eabbe788b5369405de72025-01-15T21:24:58ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752024-01-0120241012210.14232/ejqtde.2024.1.1010461Multi-bump solutions of Schrödinger–Bopp–Podolsky system with steep potential wellLi Wang0Jun Wanghttps://orcid.org/0000-0003-0339-6808Jixiu Wang1East China Jiaotong University, Nanchang, ChinaDepartment of Mathematics, Sun Yat-sen University, Guangzhou, ChinaIn this paper, we study the existence of multi-bump solutions for the following Schrödinger–Bopp–Podolsky system with steep potential well: \begin{equation*} \begin{cases} -\Delta u+(\lambda V(x)+V_0(x))u+K(x)\phi u= |u|^{p-2}u, &x\in \mathbb{R}^3,\\ -\Delta \phi+a^2\Delta^2\phi=K(x) u^2, &x\in \mathbb{R}^3, \end{cases} \end{equation*} where $p \in(4,6), a>0$ and $\lambda$ is a parameter. We require that $V(x) \geq 0$ and has a bounded potential well $\Omega=V^{-1}(0)$. Combining this with other suitable assumptions on $\Omega, V_{0}$ and $K$, when $\lambda$ is large enough, we obtain the existence of multi-bump-type solutions $u_{\lambda}$ by using variational methods.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10461schrödinger–bopp–podolsky systempenalization methodvariational methods
spellingShingle Li Wang
Jun Wang
Jixiu Wang
Multi-bump solutions of Schrödinger–Bopp–Podolsky system with steep potential well
Electronic Journal of Qualitative Theory of Differential Equations
schrödinger–bopp–podolsky system
penalization method
variational methods
title Multi-bump solutions of Schrödinger–Bopp–Podolsky system with steep potential well
title_full Multi-bump solutions of Schrödinger–Bopp–Podolsky system with steep potential well
title_fullStr Multi-bump solutions of Schrödinger–Bopp–Podolsky system with steep potential well
title_full_unstemmed Multi-bump solutions of Schrödinger–Bopp–Podolsky system with steep potential well
title_short Multi-bump solutions of Schrödinger–Bopp–Podolsky system with steep potential well
title_sort multi bump solutions of schrodinger bopp podolsky system with steep potential well
topic schrödinger–bopp–podolsky system
penalization method
variational methods
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10461
work_keys_str_mv AT liwang multibumpsolutionsofschrodingerbopppodolskysystemwithsteeppotentialwell
AT junwang multibumpsolutionsofschrodingerbopppodolskysystemwithsteeppotentialwell
AT jixiuwang multibumpsolutionsofschrodingerbopppodolskysystemwithsteeppotentialwell