A suppression-modification gene drive for malaria control targeting the ultra-conserved RNA gene mir-184

Abstract Gene drive technology presents a promising approach to controlling malaria vector populations. Suppression drives are intended to disrupt essential mosquito genes whereas modification drives aim to reduce the individual vectorial capacity of mosquitoes. Here we present a highly efficient ho...

Full description

Saved in:
Bibliographic Details
Main Authors: Sebald A. N. Verkuijl, Giuseppe Del Corsano, Paolo Capriotti, Pei-Shi Yen, Maria Grazia Inghilterra, Prashanth Selvaraj, Astrid Hoermann, Aida Martinez-Sanchez, Chiamaka Valerie Ukegbu, Temesgen M. Kebede, Dina Vlachou, George K. Christophides, Nikolai Windbichler
Format: Article
Language:English
Published: Nature Portfolio 2025-04-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-58954-5
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849311127552393216
author Sebald A. N. Verkuijl
Giuseppe Del Corsano
Paolo Capriotti
Pei-Shi Yen
Maria Grazia Inghilterra
Prashanth Selvaraj
Astrid Hoermann
Aida Martinez-Sanchez
Chiamaka Valerie Ukegbu
Temesgen M. Kebede
Dina Vlachou
George K. Christophides
Nikolai Windbichler
author_facet Sebald A. N. Verkuijl
Giuseppe Del Corsano
Paolo Capriotti
Pei-Shi Yen
Maria Grazia Inghilterra
Prashanth Selvaraj
Astrid Hoermann
Aida Martinez-Sanchez
Chiamaka Valerie Ukegbu
Temesgen M. Kebede
Dina Vlachou
George K. Christophides
Nikolai Windbichler
author_sort Sebald A. N. Verkuijl
collection DOAJ
description Abstract Gene drive technology presents a promising approach to controlling malaria vector populations. Suppression drives are intended to disrupt essential mosquito genes whereas modification drives aim to reduce the individual vectorial capacity of mosquitoes. Here we present a highly efficient homing gene drive in the African malaria vector Anopheles gambiae that targets the microRNA gene mir-184 and combines suppression with modification. Homozygous gene drive (miR-184D) individuals incur significant fitness costs, including high mortality following a blood meal, that curtail their propensity for malaria transmission. We attribute this to a role of miR-184 in regulating solute transport in the mosquito gut. However, females remain fully fertile, and pure-breeding miR-184D populations suitable for large-scale releases can be reared under laboratory conditions. Cage invasion experiments show that miR-184D can spread to fixation thereby reducing population fitness, while being able to propagate a separate antimalarial effector gene at the same time. Modelling indicates that the miR-184D drive integrates aspects of population suppression and population replacement strategies into a candidate strain that should be evaluated further as a tool for malaria eradication.
format Article
id doaj-art-2a470ff1f15a49b6bdc9143b9f4b7721
institution Kabale University
issn 2041-1723
language English
publishDate 2025-04-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-2a470ff1f15a49b6bdc9143b9f4b77212025-08-20T03:53:32ZengNature PortfolioNature Communications2041-17232025-04-0116111410.1038/s41467-025-58954-5A suppression-modification gene drive for malaria control targeting the ultra-conserved RNA gene mir-184Sebald A. N. Verkuijl0Giuseppe Del Corsano1Paolo Capriotti2Pei-Shi Yen3Maria Grazia Inghilterra4Prashanth Selvaraj5Astrid Hoermann6Aida Martinez-Sanchez7Chiamaka Valerie Ukegbu8Temesgen M. Kebede9Dina Vlachou10George K. Christophides11Nikolai Windbichler12Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonDepartment of Life Sciences, Faculty of Natural Sciences, Imperial College LondonDepartment of Life Sciences, Faculty of Natural Sciences, Imperial College LondonDepartment of Life Sciences, Faculty of Natural Sciences, Imperial College LondonDepartment of Life Sciences, Faculty of Natural Sciences, Imperial College LondonInstitute for Disease Modeling, Bill and Melinda Gates FoundationDepartment of Life Sciences, Faculty of Natural Sciences, Imperial College LondonSection of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College LondonDepartment of Life Sciences, Faculty of Natural Sciences, Imperial College LondonDepartment of Life Sciences, Faculty of Natural Sciences, Imperial College LondonDepartment of Life Sciences, Faculty of Natural Sciences, Imperial College LondonDepartment of Life Sciences, Faculty of Natural Sciences, Imperial College LondonDepartment of Life Sciences, Faculty of Natural Sciences, Imperial College LondonAbstract Gene drive technology presents a promising approach to controlling malaria vector populations. Suppression drives are intended to disrupt essential mosquito genes whereas modification drives aim to reduce the individual vectorial capacity of mosquitoes. Here we present a highly efficient homing gene drive in the African malaria vector Anopheles gambiae that targets the microRNA gene mir-184 and combines suppression with modification. Homozygous gene drive (miR-184D) individuals incur significant fitness costs, including high mortality following a blood meal, that curtail their propensity for malaria transmission. We attribute this to a role of miR-184 in regulating solute transport in the mosquito gut. However, females remain fully fertile, and pure-breeding miR-184D populations suitable for large-scale releases can be reared under laboratory conditions. Cage invasion experiments show that miR-184D can spread to fixation thereby reducing population fitness, while being able to propagate a separate antimalarial effector gene at the same time. Modelling indicates that the miR-184D drive integrates aspects of population suppression and population replacement strategies into a candidate strain that should be evaluated further as a tool for malaria eradication.https://doi.org/10.1038/s41467-025-58954-5
spellingShingle Sebald A. N. Verkuijl
Giuseppe Del Corsano
Paolo Capriotti
Pei-Shi Yen
Maria Grazia Inghilterra
Prashanth Selvaraj
Astrid Hoermann
Aida Martinez-Sanchez
Chiamaka Valerie Ukegbu
Temesgen M. Kebede
Dina Vlachou
George K. Christophides
Nikolai Windbichler
A suppression-modification gene drive for malaria control targeting the ultra-conserved RNA gene mir-184
Nature Communications
title A suppression-modification gene drive for malaria control targeting the ultra-conserved RNA gene mir-184
title_full A suppression-modification gene drive for malaria control targeting the ultra-conserved RNA gene mir-184
title_fullStr A suppression-modification gene drive for malaria control targeting the ultra-conserved RNA gene mir-184
title_full_unstemmed A suppression-modification gene drive for malaria control targeting the ultra-conserved RNA gene mir-184
title_short A suppression-modification gene drive for malaria control targeting the ultra-conserved RNA gene mir-184
title_sort suppression modification gene drive for malaria control targeting the ultra conserved rna gene mir 184
url https://doi.org/10.1038/s41467-025-58954-5
work_keys_str_mv AT sebaldanverkuijl asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT giuseppedelcorsano asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT paolocapriotti asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT peishiyen asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT mariagraziainghilterra asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT prashanthselvaraj asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT astridhoermann asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT aidamartinezsanchez asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT chiamakavalerieukegbu asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT temesgenmkebede asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT dinavlachou asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT georgekchristophides asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT nikolaiwindbichler asuppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT sebaldanverkuijl suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT giuseppedelcorsano suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT paolocapriotti suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT peishiyen suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT mariagraziainghilterra suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT prashanthselvaraj suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT astridhoermann suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT aidamartinezsanchez suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT chiamakavalerieukegbu suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT temesgenmkebede suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT dinavlachou suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT georgekchristophides suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184
AT nikolaiwindbichler suppressionmodificationgenedriveformalariacontroltargetingtheultraconservedrnagenemir184