Crowd intelligent cooperative obstacle avoidance method inspired by brain attention mechanism

A crowd intelligent (CI) system often acquires, calculates, and transmits a large amount of redundant information during the performing of exploration tasks, which inevitably results in inefficient use of the limited resources.Therefore, it emerges a strong incentive to design a task-driven mechanis...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuming XIANG, Kun CHEN, Zhifeng ZHAO, Rongpeng Li, Honggang ZHANG
Format: Article
Language:zho
Published: POSTS&TELECOM PRESS Co., LTD 2022-03-01
Series:智能科学与技术学报
Subjects:
Online Access:http://www.cjist.com.cn/thesisDetails#10.11959/j.issn.2096-6652.202215
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A crowd intelligent (CI) system often acquires, calculates, and transmits a large amount of redundant information during the performing of exploration tasks, which inevitably results in inefficient use of the limited resources.Therefore, it emerges a strong incentive to design a task-driven mechanism for efficient utilization of computing and communication resources.A crowd intelligent cooperative obstacle avoidance method inspired by brain attention mechanism was proposed.Inspired by brain attention mechanism, the CI system introduced an intelligent selection module based on the deep Q network, by efficiently tuning the working state of sensors exploring the unknown environment and realized the acquisition and calculation of key necessary information with as little sensor overhead as possible.Meanwhile, based on the optimal reciprocal collision avoidance algorithm, a single agent fuses a small amount of limited information from neighbor agents to drive the intelligent selection module, so as to greatly reduce the redundancy of sensor acquisition and information calculation required for the obstacle avoidance task.The effectiveness of this proposed method was verified through extensive simulation analyses and practical realization empowered with Kehepera IV robots.The results show that the proposed method can significantly reduce the redundancy of sensor information in the CI system.More importantly, as the number of agents and the amount of information interaction increase, there also emerged a clear trend in the increase of performance gains.
ISSN:2096-6652