Existence of a Period-Two Solution in Linearizable Difference Equations

Consider the difference equation xn+1=f(xn,…,xn−k),n=0,1,…, where k∈{1,2,…} and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equation xn+l=∑i=1−lkgixn−i,...

Full description

Saved in:
Bibliographic Details
Main Authors: E. J. Janowski, M. R. S. Kulenović
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2013/421545
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849307601261559808
author E. J. Janowski
M. R. S. Kulenović
author_facet E. J. Janowski
M. R. S. Kulenović
author_sort E. J. Janowski
collection DOAJ
description Consider the difference equation xn+1=f(xn,…,xn−k),n=0,1,…, where k∈{1,2,…} and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equation xn+l=∑i=1−lkgixn−i, n=0,1,…, where l,k∈{1,2,…} and the functions gi:ℝk+l→ℝ. We give some necessary and sufficient conditions for the equation to have a minimal period-two solution when l=1.
format Article
id doaj-art-281f86c4d29448ccbc2acb4b4151b0f3
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-281f86c4d29448ccbc2acb4b4151b0f32025-08-20T03:54:42ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2013-01-01201310.1155/2013/421545421545Existence of a Period-Two Solution in Linearizable Difference EquationsE. J. Janowski0M. R. S. Kulenović1Department of Mathematics, University of Rhode Island, Kingston, RI 02881-0816, USADepartment of Mathematics, University of Rhode Island, Kingston, RI 02881-0816, USAConsider the difference equation xn+1=f(xn,…,xn−k),n=0,1,…, where k∈{1,2,…} and the initial conditions are real numbers. We investigate the existence and nonexistence of the minimal period-two solution of this equation when it can be rewritten as the nonautonomous linear equation xn+l=∑i=1−lkgixn−i, n=0,1,…, where l,k∈{1,2,…} and the functions gi:ℝk+l→ℝ. We give some necessary and sufficient conditions for the equation to have a minimal period-two solution when l=1.http://dx.doi.org/10.1155/2013/421545
spellingShingle E. J. Janowski
M. R. S. Kulenović
Existence of a Period-Two Solution in Linearizable Difference Equations
Discrete Dynamics in Nature and Society
title Existence of a Period-Two Solution in Linearizable Difference Equations
title_full Existence of a Period-Two Solution in Linearizable Difference Equations
title_fullStr Existence of a Period-Two Solution in Linearizable Difference Equations
title_full_unstemmed Existence of a Period-Two Solution in Linearizable Difference Equations
title_short Existence of a Period-Two Solution in Linearizable Difference Equations
title_sort existence of a period two solution in linearizable difference equations
url http://dx.doi.org/10.1155/2013/421545
work_keys_str_mv AT ejjanowski existenceofaperiodtwosolutioninlinearizabledifferenceequations
AT mrskulenovic existenceofaperiodtwosolutioninlinearizabledifferenceequations